# DYNAMICS OF ESTRUS BEHAVIOUR IN BUFFALOES: LOOKING AT VARIOUS REPRODUCTIVE ASPECTS RELATED TO ESTRUS AND METHODS FOR DETECTION

Varra Manasa<sup>1,\*</sup>, Veerasamy Sejian<sup>2</sup>, Girish Kumar Venkataswamy<sup>1</sup>, Sampath Kumar Bogapathi<sup>1</sup> and Ravi Sundaresan Nagalingam<sup>3</sup>

> Received: 21 June 2021 Accepted: 20 December 2024

#### **ABSTRACT**

Buffaloes are the main milk producing units of India and are the backbone of Indian milk industries. Due to their significant contribution to reasonably priced and nutrient-dense animal protein, which will assist address global nutritional security, the demand for wholesome buffalo food items is still rising worldwide. Early estrus identification is one of the most crucial factors for buffaloes to reproduce more successfully. Buffaloes are seasonal polyestrous breeders and silent heat animals. This review article aims to highlight the importance of traditionally available methods and the non-invasive methods which are being attempted to detect estrus in buffaloes keeping in view the various factors influencing the estrus cycle and visualizing the molecular events associated with the ovarian physiology leading to the estrus cycle. Detection of silent estrus with the combinatorial use of traditionally available methods only may be difficult to identify individual animal in estrus by the farmer alone. Interventions in existing management practices

can manifest estrus nicely. Many non-invasive methods/ assays/ tools to aid estrus detection have been attempted, but none have been proven efficient or reliable to be used at the field level by the small and/ marginal farmers. Therefore, a detailed study of the multiple factors influencing the estrus behaviour, reproductive endocrinology and expression of genes associated with molecular pathways related to estrus is required. This may in turn pave the way for not only the identification of new molecules related to estrus behaviour but also enhances the efficiency of non-invasive methods to detect estrus in buffaloes.

**Keywords**: *Bubalus bubalis*, buffaloes, estradiol, estrus, FSH, LH, livestock, reproduction, polyestrous, progesterone

#### **INTRODUCTION**

Buffaloes contribute to most of the milk produced in India and they are the backbone of Indian milk industries (NDDB, 2019). India

<sup>&</sup>lt;sup>1</sup>Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences University, Bangalore, India, \*E-mail: dr.manasa88@gmail.com

<sup>&</sup>lt;sup>2</sup>Indian Council of Agricultural Research, National Institute of Animal Nutrition and Physiology, Bangalore, India

<sup>&</sup>lt;sup>3</sup>Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India

produces over half of the world's buffalo meat and around two-thirds of its milk (FAOSTAT, 2005). Compared to beef Bos taurus, buffalo meat has significant health benefits for humans and has a higher protein content, fewer somatic cells, and a lower cholesterol content (Ahmad et al., 2008). Buffalo is the dairy animal of the twenty-first century due to its higher productivity and capacity to adjust to shifting climatic conditions (Siddiky and Faruque, 2018; Paul et al., 2003). While there are many benefits to raising buffaloes, the primary barrier to realizing their full productive potential is their generally low reproductive efficiency, which is demonstrated by their late maturity, poor estrus sign manifestation, silent estrus, and seasonality in breeding (Ravinder et al., 2016; Selvam et al., 2017). Estrus is the most crucial phase when the females express desire for coitus. As the symptoms of estrus such as swelling of vulva, cervical mucus discharge, restlessness, frequent urination, etc. are not always prominent in the case of buffalo, they are commonly known as "silent-heat or silent-estrus" animals (Danell et al., 1984). Genetic makeup of the breed, nutritional status of the animal and the management aspects of the dairy herd are the most important factors that affect the estrus behaviour. The successful reproductive management in buffaloes depends mostly on effective estrus detection (Muniasamy et al., 2017).

Lack of an effective method to detect estrus in buffalo by the livestock owner at the field level is a major limitation in the dairy industry which results in huge economic loss. Though several attempts have been made to devise methods to detect estrus in buffalo, none has been proven efficient or reliable (Rajanarayanan and Archunan, 2011; Muthukumar *et al.*, 2014a; Muthukumar *et al.*, 2014b). The best way to overcome the present limitation of identifying buffaloes in estrus would

be to develope a practicable non-invasive and farmer-friendly pen side kits/ assays/ methods/ modules. At the same time these assays should be specific and sensitive to detect individual animals in heat. This can be possible by correlating the physio-biochemical characteristics of buffaloes related to estrus with the various factors influencing the estrus behaviour. The resulted data can then be correlated with the estrus detection techniques to overcome the existing limitations. Hence, the present review article aims to highlight the need for the development of effective, specific and sensitive non-invasive methods over the routinely used methods for detecting estrus in buffaloes with a comprehensive understanding of the physiological and biochemical aspects of the estrus behaviour in buffaloes.

# Biochemical and reproductive characteristics of buffaloes associated with estrus

### Estrus cycle and improvement of fertility by estrus detection

At the age of 24 months, buffaloes go through puberty (10 to 36 months on average). The estrus cycle is split into four phases based on physiological and endocrinological events: estrus (day 0), metestrus (days 1 to 4), di-estrus (days 5 to 18), and pro-estrus (day 19 to estrus) (Ramadan, 2017). Estrus is a dynamic process that lasts anywhere from 17 to 24 days and lasts for an average of 20 h. The length of the estrus cycle is roughly 21 days. Buffalo's estrus cycle can vary in length for a number of reasons, including as unfavorable environmental variables, poor diet, and abnormalities in the hormones secreted by the ovaries (Kaur and Arora, 1984; Nanda et al., 2003). The buffaloes often enter estrus in the late evening, with the hours of darkness marking the

height of their sexual activity. The hypothalamic-pituitary-gonadal axis, which generates hormones that control reproductive events, controls the estrus cycle (Batra and Pandey, 1982). Best behavioural sign considered for estrus detection is standing to be mounted behaviour which is homosexual and is exhibited by only 31% of buffaloes (Shashikumar *et al.*, 2018; Suthar and Dhami, 2010). Further, expressions of the above-mentioned signs are compromised during the summer season in buffaloes leading to a higher incidence (29%) of silent estrus (Kumar *et al.*, 2013).

Estrus detection in buffaloes can be regarded as a crucial precondition for the implementation of various ovulation synchronization and estrus protocols, as well as the use of sexed semen in buffalo calves, which have been tried in recent years to increase reproductive efficiency.

#### **Buffaloes** are seasonally polyestrous

Buffaloes naturally increase their estrus cyclicity as the day lengthens. They exhibit estrous behavior from September to January, and the intensity of their symptoms increases from October to November. Buffaloes are negatively photoperiodic. (Sange et al., 1994; Singh and Nanda, 1993). According to D'Occhio et al. (2020), endogenous (hormones, genotype) and exogenous (photoperiod, climate, diet, management) elements affect buffalo seasonal breeding. The start of the breeding season is linked to higher calorie intake and decreased protein intake. The behaviour of maximum number of animals exhibiting estrus during shorter days/ decreasing day length is found to be associated with the hormone melatonin which has a fundamental role in photoperiodic time measurement within the brain. In buffaloes, melatonin plays a significant role in regulating

the yearly cycles of gonadotropin secretion and gonadal function, which in turn affects the behavior of estrus (Occhio *et al.*, 2020).

On the other hand, the non-reproductive season (spring and summer) characterised by longer days are found to suppress estrus behaviour (De Carvalho et al., 2016). This may also be associated with lower levels of gonadotrophins and lower levels of estradiol during the summer released from smaller preovulatory follicles. Seasonal estrus behavior in buffaloes may also be exacerbated by varying concentrations of estrogenic substances in plants or fodder during different seasons. This demonstrates the intricate dependence of bovine reproduction on soil, plant, and climatic factors, especially in tropical and subtropical regions of the world (Singh et al., 2000). However, in the equatorial zones of tropical countries like India, the female buffaloes can present the estrous cycle throughout the year if they are provided adequate nutrition and conducive environment for the maintenance of reproductive efficiency (Phogat et al., 2016; Virmani et al., 2018).

### Folliculogenesis and ovarian follicular dynamics of buffaloes

It is easier to conceptualize and visualize the complex molecular pathways involving numerous genes, gene transcripts, proteins, and small molecules that are/may be contributing to the animal exhibiting the signs of estrus when one is aware of ovarian physiology and the follicular dynamics that lead to the estrous cycle in the context of intrinsic and extrinsic factors influencing the cycle.

The female reproductive cycle in mammals is ultimately impacted by the interrelated processes of folliculogenesis and oogenesis. Oocytes are developed from primordial germ

cells. A complex series of events that occur inside the follicle are necessary for the development of mammalian oocytes. These events are governed by developmental mechanisms. The development of the egg is halted in the ovary at the primordial follicle stage and continues throughout the reproductive life after folliculogenesis commences.

The differentiation of follicles into four types i.e., primordial (resting follicles), primary (follicles activated for development or atresia), secondary (large-sized follicles) and tertiary (antral and preovulatory follicles) is known as folliculogenesis, according to Fortune et al. (2000); Suh et al. (2002). The process of folliculogenesis, which ends with either ovulation or death by atresia, begins with the recruitment of primordial follicles. The complex developmental transitions of folliculogenesis, which occur in the following three phases, are facilitated by the multidirectional interactions of the oocyte, granulosa cells (GCs), theca cells, and the hypothalamic-pituitary axis of the endocrine system (Williams and Erickson, 2012; Hillier, 2001). Between the start of primordial follicles and the late preantral phase, when follicle development appears to be controlled by the expression of many local factors, gonadotrophin is not involved. Gonadotrophin-responsive follicles are in the intermediate stage where they will react to gonadotrophins' activity but are not dependent on them for regular growth and development. Furthermore, follicles only continue to grow and mature during the gonadotrophin-dependent phase, which takes place between the antral and preovulatory stages, when critical threshold levels of FSH and LH are present.

The physiological development of germ and somatic cell components during the gonadotropinindependent phase of folliculogenesis is supported by locally produced regulatory factors that are facilitated by granulosa cell-oocyte interactions, which occur through gap junctions and paracrine factors (Buccione *et al.*, 1990; Cecconi and Colonna, 1996). The primary follicles continue to mature into secondary and tertiary follicles, also known as preantral follicles. Transitions from the primary stage to the early antral stage are primarily influenced by a variety of intraovarian variables and signaling pathways, some of which are shown in Table I (adapted from Gura and Freiman, 2018).

Gonadotropin is responsive to the middle transitions of folliculogenesis because theca cells have luteinizing hormone (LH) receptors, and granulosa cells have follicle-stimulating hormone (FSH) receptors during the early stages of development. In the gonadotrophin-dependent phase, granulosa cells and oocytes produce a variety of growth factors (GFs) that impact the action of gonadotropin in a variety of ways, both favorably and unfavorably (Erickson and Shimasaki, 2001).

After then, preantral follicles mature into antral follicles. The majority of early antral follicles experience atresia, a regulated process of follicle death mediated by apoptosis. Cyclic recruitment, mainly triggered by FSH signalling, protects a small group of antral follicles from atresia during the follicular phase of a female's reproductive cycle and chooses them to continue developing into preovulatory follicles, also referred to as Graafian follicles (Zeleznik, 2001; Richards, 1980). The hypothalamic-pituitary-ovarian axis secretes hormones that function as an endocrine system to synchronize the subsequent phases of cyclic recruitment (Mc Gee and Hsueh, 2000). Preovulatory follicles are the only form of follicle that can ovulate and are the primary makers of estrogens. FSH signaling is primarily responsible for the generation of estradiol since it raises the amounts of aromatase in granulosa cells. Estradiol levels rise because of mature antral follicles, which are a result of elevated FSH levels. During this time, activin A and insulin-like growth factors (IGFs) also contribute to the rise in estradiol levels (Ginther et al., 1989; Bashir et al., 2016). FSH levels fall because of estradiol's negative feedback loop to the hypothalamic-pituitary axis. This is also made possible by the activity of inhibin B, a peptide hormone produced by granulosa cells that prevents the anterior pituitary from secreting and generating FSH. The ovulatory LH surge and subsequent ovulation are triggered by the dominant antral follicle's production of threshold levels of estradiol, which positively feedback to the hypothalamic-pituitary axis. By regulating oocyte maturation and generating the steroid hormones progesterone (P4) and estrogen (E2), which are essential for maintaining the ovarian cycle, ovarian granulosa cells (GCs) physiologically contribute to the growth and selection of the dominant follicle. Signals pertaining to cell death, survival, and differentiation interact to closely govern the development of ovarian follicles in mammals. To better understand the seasonal variations in the molecular condition of buffalo eggs, Capra et al. (2020) carried out a relatively recent study that unequivocally demonstrated the influence of season on oocyte competence and, in turn, the transcription of oocyte genes linked to folliculogenesis

Murphy et al. (1991) reported that buffalo follicular development is characterized by a wave-like pattern, the most common of which are two waves (Baruselli et al., 1997) or three waves (Barkawi et al., 2009). Environmental and genetic factors both affect this pattern. It has been found that the size of the follicles and the level of estrogen in the blood have a substantial impact

on the number of waves in the estrus cycle and the regulation of follicular development. If all requirements are satisfied (follicular size larger than 10 mm and estradiol concentration higher than 5.0 pg/ml after the emergence of the second wave), the cycle is categorized as a two-wave cycle; if not, it is still a three-wave cycle (Nosier, 2003).

Research has demonstrated a correlation between the number of waves in a buffalo's estrous cycle and the duration of the luteal phase during the reproductive season (Baruselli *et al.*, 1997). In buffaloes, the length of the estrous cycle and the luteal phase are linked to the number of waves in an estrous cycle throughout the reproductive season (Baruselli *et al.*, 1997).

Accordingly, ovarian folliculogenesis is a multifaceted and dynamic process that involves a variety of endocrine and ovarian cells as well as signals (Jones and Shikanov, 2019). Primordial follicle assembly and quiescence are both susceptible to developmental mistakes and environmental stress (Hannon and Curry, 2018). As a result, the oocyte controls and depends on the dominant ovarian follicle to develop, and the oocyte gains developmental competence as it grows inside the follicle. The cyclicity of the estrus is also maintained by this two-way communication, which is regulated by the molecular/signaling pathways linked to folliculogenesis, which is again a determinant of an individual animal's genetic composition that is influenced by exogenous factors such as climate, photoperiod, nutrition, and environmental insults. Note that the intricate signaling pathways involved in folliculogenesis are not covered in detail in this review. Although the molecular mechanisms underlying folliculogenesis are thoroughly investigated in humans and laboratory animals, thorough investigations into the range of variables affecting buffaloes' estrus behaviour have not been done.

#### **Endocrinology of estrus cycle**

The fine hormonal changes that occur around the estrus (day 0) and luteal phases of estrus cycle further defines certain stages namely, periestrus phase (Day 1), early luteal phase (Day 2 to Day 5), mid- luteal phase (Day 6 to Day 14) and late luteal phase (Day 4 to Day 2). The data available in the scientific literature on the peripheral circulatory concentrations of various hormones associated with dictating and regulating the estrus cycle in buffaloes helps in understanding the scientific basis behind the various methods attempted to detect estrus in buffaloes. The various hormones that regulate the estrus cycle in buffaloes include the following.

#### Role of progesterone (P4) in buffalo estrus behaviour

Plasma P4 levels were found to rise and fall in coincidence with the growth and regression of corpus luteum (CL) with the peripheral concentration being the lowest (0.30±0.06 ng/ ml) during the peri-estrous phase. Gradually its concentration increases through the early luteal phase and reaches maximum concentration  $(1.94\pm0.03 \text{ ng/ml})$  during the mid-luteal phase. The plasma P4 concentrations were found to be lower in animals which exhibit silent estrus when compared to the ones which showed overt oestrus in the above-mentioned phases of estrus cycle, (Mondal and Prakash, 2002b). The poor expression of estrus during summer season has been attributed to the lower P4 levels at estrus as well at the midluteal phase (Rao and Pandey, 1982). P4 concentrations have also been found to vary nutritional status of the animal (Kaur and Arora, 1984).

### Role of estradiol (E2) and inhibin in buffalo estrus behaviour

According to studies, the E2 is essential for retaining uterine tonicity and exhibiting behavioural signs of estrus (Suthar and Dhami, 2010). Circulating plasma inhibin and oestradiol concentrations were found to be lowest (0.31±0.01 and 11.04±0.13 ng/ml) during the mid-luteal phase, increases through the late luteal phase to maximum concentrations (0.44 $\pm$ 0.02 and 22.48 $\pm$ 0.32 ng/ml) during the peri-estrous phase. Summertime was shown to have lower plasma E2 concentrations than cooler months (Rao and Pandey, 1983). Lower peak values of E2 around estrus coupled with decreased P4 concentrations (Rao and Pandey, 1982) and higher plasma inhibin levels (Mondal et al., 2002a; 2003b) were attributed to be the major reason for the higher incidence of silent estrus during summer.

#### Role of Follicle Stimulating Hormone (FSH) in buffalo estrus behaviour

Plasma FSH concentrations were found to be lowest during the early luteal phase and increases through the mid-luteal phase to a maximum concentration during the peri-estrous phase. Climate was also observed to have an impact on peripheral FSH concentrations. Compared to equivalent phases of medium (July to October) and low breeding season (March to June), FSH concentrations have been found to be significantly higher during estrus and luteal phase in peak breeding seasons (November to December) in Surti buffaloes (Janakiraman *et al.*, 1980).

# Role of Luteinizing Hormone (LH) in buffalo estrus behaviour

Peripheral LH remained at basal levels throughout the estrous cycle till the day of estrus

when a pre-ovulatory LH surge occurs (Rahe *et al.*, 1980). The peripheral LH levels are also influenced by the season. The decrease in peak value of LH around estrus together with decrease in P4 concentrations (Rao and Pandey, 1982) may also be attributed for higher incidence of silent estrus during summer.

#### Role of prolactin in buffalo estrus behaviour

Peripheral prolactin concentrations were found to be lowest during the late luteal phase and increases to a maximum concentration during the peri-estrous phase which then declines during the early luteal phase. Peripheral plasma prolactin concentrations were also found to be influenced by seasonal variations. There are various studies reporting significantly higher concentrations of prolactin during summer than in winter season attributing the influence of photoperiod on the activity of the pineal gland (Heranjal *et al.*, 1979; Razdan and Kakar, 1980; Kaker *et al.*, 1982; Galhotra *et al.*, 1988).

### Role cortisol, testosterone, T3 and T4 in buffalo estrus behaviour

Peripheral plasma cortisol concentration was found to be decreasing from that of early luteal phase (2.68±0.14 ng/ml) to mid-luteal phase (1.43±0.27 ng/ml) and again increases during the late luteal phase (2.06±0.17 ng/ml). Plasma T3 concentrations were found to be decreasing from the late luteal phase to the peri-oestrous phase which then was found to increase during the early luteal phase. On the other hand, T4 concentrations were found to be increasing from the late luteal phase to the peri-oestrous phase which then decreased during the early luteal phase. Lowest thyroid gland activity has been reported to occur during summer (Vadodaria *et al.*, 1978) which may be associated

with deranged reproductive behaviour, suboptimal follicular development, low FSH and FSH/LH ratio and high prolactin levels, resulting in silent estrus in Egyptian buffaloes (Borady *et al.*, 1987). As, there are no hormone-based assays available to detect the animals in estrus that can be used at the field level till date, the above information would help greatly to overcome the important limitation of detecting silent estrus in buffaloes by acting as ancilliary aids when the development of non-invasive methods to detect estrus in buffaloes are being attempted.

# Estrus detection techniques traditionally employed

Traditional methods that can be employed by the livestock owner to detect estrus in buffaloes include painting the tail of the animal which is expected to come to the estrus phase. Rubbing off the paint due to mounting of other animals can be easily checked for at least once a day to detect heat (Suthar and Dhami, 2010). Others include KaMaR heat mount detectors which will be placed in front of the tail head and a change in the colour of the area indicates mounting of the animals. Rise in vaginal temperature by about 0.5 to 0.8°C and increase in the overall movement of the animal by up to 40% can also be observed with the animals in estrus. But these aids are unsatisfactory when wallowing / rubbing interfere with the efficiency of detection (Noakes et al., 2001) or any systemic diseases causing disturbances in animals leading to false positive interpretations.

Careful observation for the visual signs and behavioural signs of female buffaloes along with the use of tail paint/ detector can further improve the estrus detection efficiency (Rao *et al.*, 2013). Ultrasonography (Souza *et al.*, 2011) activity meters such as pedometers and accelerometer,

monitoring the herd by advanced closed-circuit television and ultraviolet-wideband technologies (Rao *et al.*, 2013) can aid the estrus detection with high efficiency in buffaloes. But they require expert persons for careful handling and accurate interpretation, and these techniques are expensive for a marginal farmer to afford.

Estimation of biochemical parameters like vaginal pH of 7.0 to 6.72 one day before estrus, vaginal smear examination for the increase in cornified acidophilic cells, observation of fern pattern of cervical mucus discharge for the increase in venation/ branching, decrease in viscosity of cervical mucus, rise in the glucose content of cervical mucus can aid in the detection of estrus in buffaloes (Rao *et al.*, 2013).

Gynaeco-clinical examination of estrus animal for the relaxation of cervix, tonicity of uterus, palpable mature follicle and / or CL on the ovary can aid in confirming the estrus phase. Therefore, biochemical and gyneco-clinical parameters strengthen the detection of estrus in animals where visual and behavioural signs are not exhibited promptly, and also, they compensate the behavioural parameters in the absence of bull (Selvam and Archunan, 2017)

Other laboratory tests that can be performed to detect estrus include RIA/ ELISA tests for the estimation of P4 and E2 levels in serum/ milk (Domenech et al., 2011) Visual and biochemical observation of estrus (Verma et al., 2014) and many devices that have been developed to aid in improving estrus detection has their own demerits. Even if several technologies have been developed to aid in heat detection, successful estrus identification still requires precise and reasonably priced methodologies because the previously described conventional estrus detection

methods may not always function flawlessly when used alone.

#### Non-invasive methods attempted to detect estrus

The various limitations associated with the use of traditional methods for detecting estrus led to the advancement in research for the development of various non-invasive methods which are being described below.

#### Pheromone based assays

Buffaloes release chemical signals into the surrounding atmosphere (Hradecky, 1975; Brennan and Kendrick, 2006; Tirindelli et al., 2009) mostly the pheromones that get excreted through faces, urine, vaginal secretions, saliva and play a significant role in sexual behaviour (keverne et al., 1983). Recent reports evinced that buffaloes exhibit reproductive behaviour and releases chemo signals that can be exploited for estrus detection (Archunan, 2009). 1-chloro octane, 4-methylphenol, and 9-octadecenoic acid (oleic acid) have been identified in the urine of estrus Murrah buffaloes (Rajanarayanan and Archunan, 2011). Behavioural assay further revealed that bulls get attracted and exhibit repeated flehmen behaviour toward 4-methyl phenol, whereas bulls exhibit penis erection and mounting response upon exposure to 9-octadecenoic acid. 4-methyl phenol (p-cresol) and oleic acid were also identified in the urine of estrus synchronized animal similar to natural estrus and are found to be involved in influencing both the sexual arousal and reproductive behaviour of bull (Muniasamy et al., 2017). p-Cresol alone in faeces (Karthikeyan et al., 2013) has also been reported as estrus-specific in buffalo. Chemical compounds in buffalo urine might be employed as potential marker candidates for the development of an estrus detection aid. (Garcia *et al.*, 1986; Rivard and Klemm, 1989; Rasmussen, 1998; Rekwot *et al.*, 2001). However, there are no estrus specific chemical compounds which have been characterized till date for the identification of estrus in buffaloes. An assay kit based on p-Cresol was recently tested using urine as the biological sample since p-Cresol was consistently present in more than one body exudates. This study reported that only 61% of the animals in estrus can be detected and therefore needs an enhancement of detection efficiency and specificity before it can be used at the field level (Karthikeyan *et al.*, 2014).

# Expression profile of Heat Shock Protein (Hsp)-70 in Cervico-Vaginal Fluid (CVF) at the estrus phase

Higher expression of Hsp-70 during the estrus phase compared to the diestrus phase was revealed by proteomic analysis of buffaloes' CVF at the estrus and diestrus phases using SDS-PAGE, protein identification using Mass Spectrometery (MS), and further confirmation of the protein identified by immunoblot. HSP-70 is found to be involved in steroidogenesis and in the assembly and trafficking of steroid receptors (Liu and Stocco, 1997). The expression of HSP-70 and heat shock transcription factor are under regulation by estrogen. Up-regulation of HSPs has also been elaborately studied in various stress conditions such as high temperature (Sonna et al., 2002), low temperature (Li et al., 1999), radiation (Kiriyama et al., 2001) bacterial and viral infections (Deithc et al., 1995) heavy metal exposure (Tedengren et al., 1999) oxidative stress (Gophna and Ron, 2003) and physical activity (Fehrenbach and Niess, 1999). According to Muthukumar et al. (2014), this work may offer a lead for the assessment of HSP-70

for buffalo estrus detection. The role of abovementioned stress conditions favouring the increase in expression of HSP-70 during various phases of estrus cycle has to be further evaluated keeping in view the role and effect of the macro - environment in which the animals are raised

### Identification of estrus specific salivary biomarkers through proteomic study

Compared with urine, saliva offers much better advantages in investigation of diagnostic biomarkers and provides a non-invasive, real-time sampling (Groschl, 2009). The specific expression of enolase and TLR 4 could be used as a biomarker for the estrus detection in buffalo (Muthukumar *et al.*, 2014b).

# Quantification of salivary minerals and electrolytes

The concentration of calcium, inorganic phosphorus, magnesium, sodium, potassium, and chloride in saliva were found to be significantly higher during the estrus phase and all these minerals were positively and significantly related to estrogen concentration. These definite variations in salivary mineral and electrolyte concentrations at estrus phase may aid in the estrus detection in buffaloes with the use of saliva as non-invasive biological fluid. This might also have a way to understand the relation of widely prevailing mineral deficiency in dairy animals and the level of various reproductive hormones in the body (Devi *et al.*, 2016)

#### Quantification of urinary and salivary LH

The amount of LH quantified in the urine (using bovine ELISA kit) was found to influence the intensity of the estrus signs exhibited like the consistency and / transparency of vaginal mucus, tonicity of uterus (Selvam *et al.*, 2017). Bovine LH

ELISA kit has been used to determine the level of salivary LH and it was reported that maximum LH level (39.07 mIU/mL) was observed during estrus phase when compared to other phases of estrus cycle. Additionally, there was a correlation between gyneco-clinical characteristics and salivary LH levels (Layek *et al.*, 2011). The above findings can aid in the development of a LH-based sensor for estrus detection in buffalo in the near future (Srinivasan *et al.*, 2020).

#### Doka test

Doka is the local term used by the farmers in North India and is the period when buffaloes show changes in teat morphology like teat engorgement. As per the findings reported by Joshi et al. (2020), the teat diameter (mm) before milking and after milking was found to be significantly higher during Doka period as compared to the pre-Doka period (where 4 days before the teat engorgement is considered as pre-Doka period). These changes in teat diameter that can be easily measured at the time of milking can safely be considered as a sign of Doka and the forthcoming heat in Murrah buffaloes and can serve as an effective way for timely heat detection since, reading and interpreting the subtle behaviour of animal is not necessarily required in this method. Even in the absence of overt behavioural symptoms, Doka can be taken as a visual sign for prediction of estrus.

As described above, the various non-invasive methods attempted to detect and / or predict estrus rely on traditionally available methods in the process of their development, does not take into an account all the factors influencing estrus cycle and still needs the enhancement in detection efficiency to be used at the field level.

#### Conclusions and future projections

As estrus cycle is a dynamic and complex process, estrus in buffaloes is greatly influenced by multiple factors affecting the ovarian physiology. The study of biochemical processes and signalling pathways associated at the genetic, transcriptomic and proteomic levels along with the involvement of small molecules influencing the estrus behaviour might be a solution to overcome the existing limitations. Therefore, we believe that a combination of the studies associated with the multiple factors influencing the estrus at all the molecular levels may aid in the development of effective, specific and sensitive non-invasive methods to detect estrus/ silent estrus in buffaloes.

The non- invasive methods attempted to detect estrus in buffaloes are relying on some of the traditional methods and hormone assays in the process of validation. The role of the various factors influencing the estrus cycle as determined by folliculogenesis as well as ovarian dynamics has not been studied in the context of behavioural signs exhibited by buffaloes. The concept visualized in this review might help in enhancing the efficiency of estrus detection in buffaloes by conducting research associating the role of molecular pathways related to ovarian physiology culminating in estrus cyclicity (as represented in Figure 1). Biological fluids such as blood, saliva, urine collected from buffaloes during the various phases of estrus cycle including the ones collected from silent heat animals can be used for the analysis of cell free genetic and / protein materials by the study genomics, epigenomics, transcriptomics, of proteomics and metabolomics (which forms the middle circle represented in green). The resulted multidimensional data can be processed and interpreted with the use of bioinformatic tools. This can be achieved by integrating the data from

Table 1. Intra-ovarian factors associated with pre-antral follicle growth (adapted from Hannon and Curry 2018).

| Factor                                                | Role                                                                                                                                                                                                                                                    | References                                 |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Activins                                              | Promote proliferation of granulosa cell                                                                                                                                                                                                                 | Knight et al., 2011                        |
| Bone morphogenic protein BMP15                        | Stimulate granulosa cell proliferation                                                                                                                                                                                                                  | Hosoe <i>et al.</i> , 2011                 |
| Growth differentiation factor<br>GDF9                 | Theca cell recruitment. Knockouts have inhibited development beyond primary stage                                                                                                                                                                       | Hosoe <i>et al.</i> , 2011                 |
| BMP4/7                                                | Modulate FSH signaling to increase estradiol levels, prevent premature luteinization                                                                                                                                                                    | Lee <i>et al.</i> , 2001                   |
| Hedgehog signaling members                            | Proper theca cell function, steroidogenesis of theca cells                                                                                                                                                                                              | Spicer <i>et al.</i> , 2009                |
| Gap junction proteins, connexins 37 and 43            | Information transferred between granulosa cells and between granulosa cells and oocytes. Beyond the primary stage, development has been impeded by knockouts.                                                                                           | Kidder and Mhawi, 2002                     |
| Cyclin D2                                             | FSH activates the factor that controls the proliferation of granulosa cells                                                                                                                                                                             | Yang and Roy, 2004; Yang and Roy, 2006     |
| Insulin like growth factor IGF                        | Enhance granulosa cell responsivness to FSH, essential for steroidogenesis                                                                                                                                                                              | Khalid <i>et al.</i> , 2000                |
| Kit/kit ligand                                        | Continued follicle development, oocyte growth, and theca cell organization                                                                                                                                                                              | Celestino et al., 2009                     |
| Keratinocyte growth factor<br>KGF                     | Promotes growth, survival and differentiation of pre- antral follicles, modulates communication between theca cells and granulosa cells via interaction between Faustino et al., 2013; Mc Gee et al., 1999 keratinocyte growth factor-1 and kit ligand, | Faustino et al., 2013; Mc Gee et al., 1999 |
| Neurotrophic tyrosine kinase<br>receptor type 2 NTRK2 | Knockouts have impaired development beyond primary stage                                                                                                                                                                                                | Kerr et al., 2009                          |
| Wilms tumor 1<br>WT1                                  | Inhibitory factor on small follicle development                                                                                                                                                                                                         | Gao et al., 2014                           |
| Anti mullerian hormone<br>AMH                         | Inhibitory factor on small follicle development                                                                                                                                                                                                         | Xu et al., 2016; Almeida et al., 2018      |

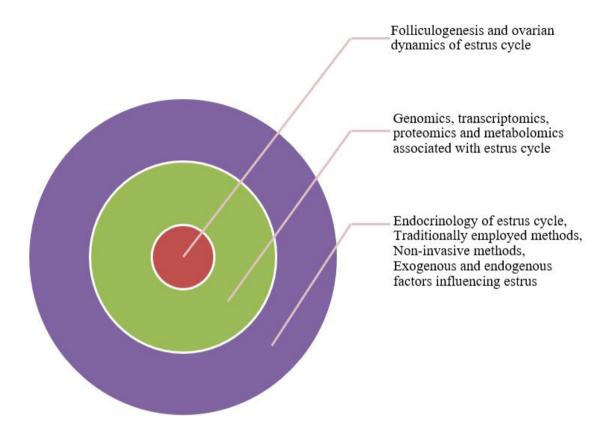



Figure 1. The illustration depicting the need for molecular research integrating the folliculogenesis and ovarian dynamics in the context of various factors affecting the estrus cycle for the rapid and efficient development of field-based assays aiding estrus detection in buffaloes.

traditional and non-invasive assays, endocrinology of estrus cycle in the context of various factors influencing the estrus cycle (which are a part of outermost circle represented in purple and are being used to detect estrus routinely). This may in turn reveal estrus specific biomarkers (which may be associated with certain key factors influencing folliculogenesis or interacting with signalling pathways of folliculogenesis represented as the core circle in red) in buffaloes by a non-invasive way.

#### REFERENCES

- Ahmad, S., I. Gaucher, F. Rousseau, E. Beaucher, M. Piot, J.F. Grongnet and F. Gaucheron. 2008. Effects of acidification on physicochemical characteristics of buffalo milk: A comparison with cow's milk. *Food Chem.*, **106**(1): 11-17. 10.1016/j. foodchem.2007.04.021
- Almeida, F.R.C.L., N.G.J. Costermans, N.M. Soede, A. Bunschoten, J. Keijer and B. Kemp. 2018. Presence of anti-Mullerian hormone (AMH) during follicular development in the porcine ovary. *PLoS One.*, **13**(7): e0197894. DOI: 10.1371/journal.pone.0197894
- Archunan, G. 2009. Vertebrate pheromones and their biological importance. *J. Exp. Zool.*, **12**(2): 227-239.
- Barkawi, A.H., Y.M. Hafez, S.A. Ibrahim, G. Ashour, K. Amal, K. El-Asheeri and N. Ghanem. 2009. Characteristics of ovarian follicular dynamics throughout the estrous cycle of Egyptian buffaloes. *Anim. Reprod. Sci.*, **110**(3-4): 326-334. DOI: 10.1016/j. anireprosci.2008.02.016
- Baruselli, P.S., R.G. Mucciolo, J.A. Visintin,

- W.G. Viana, R.P. Arruda, E.H. Madureira, C.A. Oliveira and J.R. Molero-Filho. 1997. Ovarian follicular dynamics during the estrous cycle in buffalo (*Bubalus bubalis*). *Theriogenology*, 47(8): 1531-1547. DOI: 10.1016/S0093-691X(97)00159-3
- Bashir, S.T., G.M. Ishak, M.O. Gastal, J.F. Roser and E.L. Gastal. 2016. Changes in intrafollicular concentrations of free IGF-1, activin A, inhibin A, VEGF, estradiol, and prolactin before ovulation in mares. *Theriogenology*, **85**(8): 1491-1498. DOI: 10.1016/j.theriogenology.2016.01.013
- Batra, S.K. and R.S. Pandey. 1982. Luteinizing hormone and estradiol -17β in blood plasma and milk during estrous cycle and early pregnancy in Murrah buffaloes. *Anim. Reprod. Sci.*, **5**(4): 247-257. DOI: 10.1016/0378-4320(83)90046-5
- Borady, A.M.A., A.E. Asdelaal and H.A.M. Farghaly. 1987. Seasonal variation in thyroid hormones and reproduction in Egyptian water buffalo. *Egyptian Journal of Animal Production*, **25**: 82-92.
- Brennan, P.A. and K.M. Kendrick. 2006. Mammalian social odours: attraction and individual recognition. *Philos. T. R. Soc. B.*, **361**(1476): 2061-2078. DOI: 10.1098/rstb.2006.1931
- Buccione, R., A.C. Schoroeder and J.J. Eppig. 1990. Interactions between somatic cells and germ cells throughout mammalian oogenesis. *Biol. Reprod.*, **43**(4): 543-547. DOI: 10.1095/biolreprod43.4.543
- Capra, E., B. Lazzari, M. Russo, M.A. Kosior, G.D. Valle, V. Longobardi, A. Stella, A.L. Consiglio and B. Gasparrini. 2020. Seasonal effects on miRNA and transcriptomic profile of oocytes and follicular cells in

- buffalo (*Bubalus bubalis*). *Sci. Rep.-UK.*, **10**(1): 13557. DOI: 10.1038/s41598-020-70546-5
- Cecconi, S. and R. Colonna. 1996. Influence of granulosa cells and of different somatic cell types on mammalian oocyte development *in vitro*. *Zygote*, **4**(4): 305-307. DOI: 10.1017/s0967199400003294
- Celestino, J.J.H., M.H.T. Matos, M.V.A. Saraiva and J.R. Figueiredo. 2009. Regulation of ovarian folliculogenesis by Kit Ligand and the c-Kit system in mammals. *Anim. Reprod.*, **6**(3): 431-439.
- De Carvalho, N.A.T., J.G. Soares and P.S. Baruselli. 2016. Strategies to overcome seasonal anestrus in water buffalo. *Theriogenology*, **86**(1): 200-206. DOI: 10.1016/j.theriogenology.2016.04.032
- Danell, B., N. Gopakumar, M.C.S. Nair and K. Rajagopalan. 1984. Heat symptoms and detection in Surti buffalo heifers. *Indian J. Anim. Res.*, **5**: 1-7.
- Devi, I., P. Singh, S.S. Lathwal, A. Kumaresan and K. Dudi. 2016. Evaluation of salivary electrolytes during estrous cycle in Murrah buffaloes with reference to estrus detection. *Vet. World*, **9**(10): 1157-1161. DOI: 10.14202/vetworld.2016.1157-1161
- Deitch, E.A., S.C. Beck, N.C. Cruz and A. Demaio. 1995. Induction of heat shock gene expression in colonic epithelial cells after incubation with *Escherichia coli* or endotoxin. *Crit. Care. Med.*, **23**(8): 1371-1376. DOI: 10.1097/00003246-199508000-00010
- D'Occhio, M.J., S.S. Ghuman, G. Neglia, G.D. Valle, P.S. Baruselli, L. Zicarelli, A.V. Jose, M. Sarkar and G. Campanile. 2020. Exogenous and endogenous factors in

- seasonality of reproduction in buffalo: A review. *Theriogenology*, **150**(1): 186-192. DOI: 10.1016/j.theriogenology.2020.01.044
- Domenech, A., S. Pich, A. Aris, C. Plasencia, A. Bach and A. Serrano. 2011. Heat identification by 17β-estradiol and progesterone quantification in individual raw milk samples by enzyme immunoassay. *Electron. J. Biotechn...* **14**(4): 10.
- Erickson, G.F. and S. Shimasaki. 2001. The physiology of folliculogenesis: the role of novel growth factors. *Fertil. Steril.*, **76**(5): 943-949. DOI: 10.1016/s0015-0282(01)02859-x
- FAOSTAT. 2005. FAOSTAT Agriculture Data, Food and Agriculture Organization Statistics, Rome, Italy.
- Faustino, L.R., I.M.T. Lima, A.A. Carvalho, C.M.G. Silva, S.V. Castro, C.H. Lobo, C.M. Lucci, C.C. Campello, J.R. Figueiredo and A.P.R. Rodrigues. 2013. Interaction between keratinocyte growth factor-1 and kit ligand on the goat preantral follicles cultured *in vitro*. *Small Ruminant Res.*, **114**(1): 112-119. DOI: 10.1016/j.smallrumres.2013.05.002
- Fehrenbach, E. and A.H. Niess. 1999. Role of heat shock proteins in the exercise response. *Exerc. Immunol. Rev.*, **5**: 57-77.
- Fortune, J.E., R.A. Cushman, C.M. Wahl and S. Kito. 2000. The primordial to primary follicle transition. *Mol. Cell. Endocrinol.*, **163**: 53-60.
- Galhotra, M.M., M.L. Kaker, I.S. Lohan, S.P. Singal and M.N. Razdan. 1988. Thyroid and prolactin status in relation to production in lactating Murrah. *In Proceedings of 2<sup>nd</sup> World Buffalo Congress*, New Delhi, India.
- Garcia, M.C., S.M. Mcdonell, R.M. Kenny and H.G. Osborne. 1986. Bull sexual behavior

- tests: Stimulus cow affects performance. *Appl. Ani. Behav. Sci.*, **16**: 1-10. DOI: 10.1016/0168-1591(86)90035-3
- Ginther, O.J., L. Knopf and J.P. Kastelic. 1989.

  Temporal associations among ovarian events in cattle during oestrous cycle with two and three follicular waves. *J. Reprod. Fertil.*, **87**(1): 223-228. DOI: 10.1530/jrf.0.0870223
- Gophna, U. and E.Z. Ron. 2003. Virulence and the heat shock response. *Int. J. Med. Microbiol.*, **292**(7-8): 453-461. DOI: 10.1078/1438-4221-00230
- Gao, F., J. Zhang, X. Wang, J. Yang, D. Chen, V. Huff and Y. Liu. 2014. *Wt1* functions in ovarian follicle development by regulating granulosa cell differentiation. *Hum. Mol. Genet.*, **23**(2): 333-341. DOI: 10.1093/hmg/ddt423
- Gura, A. and R.N. Freiman. 2018. Primordial follicle Megan. *Encyclopedia of Reproduction*, 2<sup>nd</sup> ed. **2**: 65-71.
- Groschl, M. 2009. The physiological role of hormones in saliva. *Bioessays*, **31**(8): 843-852. DOI: 10.1002/bies.200900013
- Hannon, P.R. and T.E. Curry. 2018. Folliculogenesis. *Encyclopedia of Reproduction*, 2<sup>nd</sup> ed. **2**: 72-79.
- Heranjal, D.D., A.R. Sheth, K.B. Wadedekar, R. Desai and S.S. Rao. 1979. Serum gonadotropins and prolactin levels in anoestrus buffaloes. *Indian J. Dairy Sci.*, **32**: 383-385.
- Hillier, S.G. 2001. Gonadotropic control of ovarian follicular growth and development. *Mol. Cell. Endocrinol.*, **179**(1-2):39-46. DOI: 10.1016/s0303-7207(01)00469-5
- Hosoe, M., K. Kaneyama, K. Ushizawa, K.Y. Hayashi and J. Takahashi. 2011. Quantitative

- analysis of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) gene expression in calf and adult bovine ovaries. *Reprod. Biol. Endocrin.*, 9: 33. DOI: 10.1186/1477-7827-9-33
- Hradecky, P. 1975. Occurrence of volatile compounds and possibilities of their determination using gas chromatography. *Czech Literature Review for Graduate Study*, University of Veterinary Medicine, Brno, Czechoslovakia. 185p.
- Janakiraman, K., M.C. Desai, D.R. Amin, A.R. Sheth, S.B. Moodbidri and K.B. Wadadekar. 1980. Serum gonadotropin levels in buffaloes in relation to phases of oestrous cycle and breeding periods. *Indian J. Anim. Sci.*, **50**: 601-606.
- Jones, A.S.K. and A. Shikanov. 2019. Follicle development as an orchestrated signaling network in a 3D organoid. *J. Biol. Eng.*, **13**(1): 2. DOI: 10.1186/s13036-018-0134-3
- Joshi, S.K., T.K. Mohanty, A. Kumaresan, M. Bhakat and S. Sathapathy. 2020. Changes in teat morphology (*Doka Phenomenon*) and estrus prediction in Riverine buffaloes (*Bubalus bubalis*). *Indian J. Anim. Res.*, 54(1): 16-19. DOI: 10.18805/ijar.B-3517
- Kaur, H. and S.P. Arora. 1984. Annual pattern of plasma progesterone in normal cycling buffaloes (*Bubalus bubalis*) fed two levels of nutrition. *Anim. Reprod. Sci.*, 7(4): 323-332. DOI: 10.1016/0378-4320(84)90017-4
- Kaker, M.L., M.N. Razdan and M.M. Galhotra. 1982. Serum prolactin levels of non cycling Murrah buffalo (*Bubalus bubalis*). *Theriogenology*, **17**(5): 469-474. DOI: 10.1016/0093-691X(82)90173-X
- Karthikeyan, K., S. Muniyasami, D.S. Ganesh, S. Achiraman and G. Archunan. 2013.

- Faecal chemical cues in water buffalo that facilitate estrus detection. *Anim. Reprod. Sci.*, **138**(3-4): 163-167. DOI: 10.1016/j. anireprosci.2013.02.017
- Karthikeyan, K., P. Manivannan, D. Rajesh, S Muthukumar.  $\mathbf{G}$ Muralitharan. M.A. and G. Akbarsha Archunan. 2014. Identification of p-Cresol as an estrus-specific volatile in buffalo saliva: Comparative docking analysis of buffalo obp and β-Lactoglobulin with p-Cresol. Zool. Sci., 31(1): 31-36. DOI: 10.2108/ zsi.31.31
- Keverne, E.B. 1983. Pheromonal influences on the endocrine regulation of reproduction. *Trends. Neurosci.*, **6**: 381-384. DOI: 10.1016/0166-2236(83)90170-4
- Kerr, B., C. Garcia-Rudaz, M. Dorfman, A. Dorfman, A. Paredes and S.R. Ojeda. 2009. NTRK1 and NTRK2 receptors facilitate follicle assembly and early follicular development in the mouse ovary. *Reproduction*, 138(1): 131-140. DOI: 10.1530/REP-08-0474
- Khalid, M., W. Haresign and M.R. Luck. 2000. Secretion of IGF-1 by ovine granulosa cells: effects of growth hormone and follicle stimulating hormone. *Anim. Reprod. Sci.*, **58**(3-4): 261-272. DOI: 10.1016/s0378-4320(99)00075-5
- Kidder, G.M. and A.A. Mhawi. 2002. Gap junctions and ovarian folliculogenesis. *Reprod.*, **123**(6): 613-620. DOI: 10.1530/rep.0.1230613
- Khanna, A., R.F. Aten and H.R. Behrman. 1995. Heat shock protein-70 induction mediates luteal regression in the rat. *Mol. Endocrinol.*, **9**(11): 1431-1440. DOI: 10.1210/mend.9.11.8584020

- Kiriyama, M.T., M. Oka, M. Takehana and S. Kobayashi. 2001. Expression of a small heat shock protein 27 (HSP27) in mouse skin tumors induced by UVB-irradiation. *Biological and Pharmaceutical Bulletin*, **24**(2): 197-200. DOI: 10.1248/bpb.24.197
- Knight, P.G., L. Satchell and C. Glister. 2011. Intraovarian roles of activins and inhibins. *Mol. Cell. Endocrinol.*, **359**(1-2): 53-65. DOI: 10.1016/j.mce.2011.04.024
- Kumar, P.R., S.N. Shukla, O.P. Shrivastava and R.D. Purkayastha. 2013. Incidence of postpartum anestrus among buffaloes in and around Jabalpur. *Vet. World*, 6(10): 716-719. DOI: 10.14202/vetworld.2013.716-719
- Layek, S., T. Mohanty, A. Kumaresan, K. Behera and S. Chand. 2011. Behavioural signs of estrus and their relationship to time of ovulation in Zebu (Sahiwal) cattle. *Anim. Reprod. Sci.*, **129**(3-4): 140-145. DOI: 10.1016/j.anireprosci.2011.11.006
- Lee, W.S., S.J. Yoon, T.K. Yoon, K.Y. Cha, S.H. Lee, S. Shimasaki, S. Lee and K.A. Lee. 2004. Effects of bone morphogenetic protein-7 (BMP-7) on primordial follicular growth in the mouse ovary. *Mol. Reprod. Dev.*, **69**: 159-163. DOI: 10.1002/mrd.20163
- Liu, Z. and D.M. Stocco. 1997. Heat shock-induced inhibition of acute steroidogenesis in MA-10 cells is associated with inhibition of the synthesis of the steroidogenic acute regulatory protein. *Endocrinology*, **138**(7): 2722-2728. DOI: 10.1210/endo.138.7.5278
- McGee, E.A., S.Y. Chun, S. Lai, Y.E. He and A.J.W. Hsueh. 1999. Keratinocyte growth factor promotes the survival, growth, and differentiation of preantral ovarian follicles. *Fertil. Steril.*, **71**(4): 732-738. DOI: 10.1016/s0015-0282(98)00547-0

- McGee, E.A. and A.J. Hsueh. 2000. Initial and cyclic recruitment of ovarian follicles. *Endocr. Rev.*, **21**(2): 200-214. DOI: 10.1210/edrv.21.2.0394
- Mondal, S. and B.S. Prakash. 2002b. Peripheral plasma progesterone concentration in relation to estrus expression in Murrah buffalo (*Bubalus bubalis*). *Indian J. Anim. Sci.*, **73**(3): 292-293.
- Mondal, S. and B.S. Prakash. 2002a. Peripheral plasma progesterone concentration in relation to estrus expression in Sahiwal cows and Murrah buffaloes. *Reproduction*, **28**: 29-30.
- Mondal, S., B.S. Prakash and P. Palta. 2003b. Peripheral plasma inhibin concentrations in relation to expression of oestrus in Murrah buffaloes (*Bubalus bubalis*). *Indian J. Anim. Sci.*, **73**(4): 405-407.
- Muniasamy, S., R. Muthuselvam, S. Rajanarayanan, V. Ramesh Saravanakumar and G. Archunan. 2017. p-cresol and oleic acid as reliable biomarkers of estrus: Evidence from synchronized Murrah buffaloes. *Iran. J. Vet. Res.*, **18**(2): 124-127.
- Murphy, M.G., W.J. Enright, M.A. Crowe, K. McConnell, L.J. Spicer, M.P. Boland and J.F. Roche. 1991. Effect of dietary intake on pattern of growth of dominant follicles during the oestrous cycle of beef heifers. *J. Reprod. Fertil.*, **92**(2): 333-338. DOI: 10.1530/jrf.0.0920333
- Muthukumar, S., R. Rajkumar, D. Rajesh, G. Saibaba, C.C. Liao, G. Archunan, P. Padmanabhan and B. Gulyas. 2014b. Exploration of salivary proteins in buffalo: an approach to find marker proteins for estrus. *FASEB J.*, **28**(11): 4700-4709. DOI: 10.1096/fj.14-252288

- Muthukumar, S., R. Rajkumar, K. Karthikeyan, C.C. Liao, D. Singh, M.A. Akbarsha and G. Archunan. 2014a. Buffalo cervico-vaginal fluid proteomics with special reference to estrous cycle: Heat shock protein (HSP)-70 appears to be an estrus indicator. *Biol. Reprod.*, **90**(5): 97. DOI: 10.1095/biolreprod.113.113852
- Nanda, A.S., P.S. Brar and S. Prabhakar. 2003. Enhancing reproductive performance in dairy buffalo: Major constraints and achievements. *Reprod. Suppl.*, **61**: 27-36. Available on: https://scispace.com/pdf/enhancing-reproductive-performance-in-dairy-buffalo-major-2x2pit98f1.pdf
- NDDB. 2019. World's First complete parent-wise genome assembly of buffalo. *The Hindu Business Line*, National Dairy Development Board, India. Available on: https://www.thehindubusinessline.com/news/dairy-board-develops-worlds-first-complete-parent-wise-genome-assembly-of-buffalo/article27092903.ece
- Noakes, D.E., T.J. Parkinson, G.C.W. England and G.H. Arthur. 2001. *Arthur's Veterinary Reproduction and Obstetrics*, 8th ed., Harcourt Publishers Limited, Pennsylvania, USA.
- Noseir, W.M.B. 2003. Ovarian follicular activity and hormonal profile during estrous cycle in cows: The development of 2 versus 3 waves. *Reprod. Biol. Endocrin.*, **1**: 1-6. DOI: 10.1186/1477-7827-1-50
- Paul, S.S., A.B. Mandal, G.P. Mandal, A. Kannan and N.N. Pathak. 2003. Comparative dry matter intake and nutrient utilization efficiency in lactating cattle and buffaloes., *J. Sci. Food. Agric.*, **83**(4): 258-267. DOI: 10.1002/jsfa.1305

- Phogat, J.B., A.K. Pandey and I. Singh. 2016.
  Seasonality in buffaloes reproduction.

  International Journal of Plant, Animal
  and Environmental Sciences, 6(2): 46-55.

  Available on: https://www.fortunejournals.
  com/ijpaes/admin/php/uploads/949\_pdf.
  pdf
- Rahe, C.H., R.E. Owens, J.L. Fleiger, H.J. Newton and P.G. Harms. 1980. Pattern of plasma luteinizing hormone in the cyclic cow: Dependence upon the period of the cycle. *Endocrinol.*, **107**(2): 498-505. DOI: 10.1210/endo-107-2-498
- Rajanarayanan, S. and G. Archunan. 2011. Identification of urinary sex pheromones in female buffaloes and their influence on bull reproductive behaviour. *Res. Vet. Sci.*, **91**(2): 301-305. DOI: 10.1016/j.rvsc.2010.12.005
- Ramadan, T.A. 2017. Role of melatonin in reproductive seasonality in buffaloes, p.88-107. *In* Carreira, R.P. (edn.) *Theriogenology*, DOI: 10.5772/intechopen.69549
- Rao, T.K.S., N. Kumar, P. Kumar, S. Chaurasia and N.B. Patel. 2013. Heat detection techniques in cattle and buffalo. *Vet. World*, **6**(6): 363-369. DOI: 10.5455/vetworld.2013.363-369
- Rao, L.V. and R.S. Pandey. 1982. Seasonal changes in plasma progesterone concentrations in buffalo cows (*Bubalus bubalis*). *J. Reprod. Fertil.*, **66**(1): 57-61. DOI: 10.1530/jrf.0.0660057
- Rao, L.V. and R.S. Pandey. 1983. Seasonal variations in oestradiol-17 beta and luteinizing hormone in the blood of buffalo cows (*Bubalus bubalis*). *J. Endocrinol.*, **98**(2): 251-255. DOI: 10.1677/joe.0.0980251
- Rasmussen, L.E.L. 1998. Chemical communication: an integral part of functional Asian elephant (*Elephas*

- *maximus*) society. *Ecoscience*, **5**(3): 411-429. DOI: 10.1080/11956860.1998.11682469
- Ravinder, R., O.D. Kaipa, V. Simhabaddela, E. Sinha, P. Singh, Varijnayan, C.S.N. Velagala, R.K. Baithalu, S.K. Onteru and D. Singh. 2016. Saliva ferning, an unorthodox estrus detection method in water buffaloes (*Bubalus bubalis*). *Theriogenology*, **86**(5): 1147-1155. DOI: 10.1016/j.theriogenology.2016.04.004
- Razdan, M.N. and M.L. Kakkar. 1980. Summer sterility and endocrine profiles of buffaloes. *Indian Dairyman.*, **32**: 459-464.
- Rekwot, P.I., D.E.O. Ogwu and V.O. Sekone. 2001. The role of pheromones and biostimulation in animal reproduction. *Anim. Reprod. Sci.*, **65**(4-4): 157-170. DOI: 10.1016/s0378-4320(00)00223-2
- Rivard, G. and W. Klemm. 1989. Two body fluids containing bovine estrous pheromone(s). *Chem. Senses*, **14**(2): 273-279. DOI: 10.1093/chemse/14.2.273
- Richards, J.S. 1980. Maturation of ovarian follicles: actions and interactions of pituitary and ovarian hormones on follicular cell differentiation. *Physiol. Rev.*, **60**(1): 51-89. DOI: 10.1152/physrev.1980.60.1.51
- Sane, C.R. 1994. *A Textbook on Reproduction* in Farm Animals (Theriogenology), 2<sup>nd</sup> ed. Varghese Publishing House, Bombay, India. 728p.
- Selvam, R.M., S.K. Onteru, Varijnayan, M. Sivakumar, D. Singh and G. Archunan. 2017. Exploration of Luteinizing hormone in Murrah buffalo (*Bubalus bubalis*) urine: Extended surge window opens door for estrus prediction. *Gen. Comp. Endocr.*, **251**: 121-126. DOI: 10.1016/j.ygcen.2016.12.002
- Selvam, R.M. and G. Archunan. 2017. A

- combinatorial model for effective estrus detection in Murrah buffalo. *Vet. World*, **10**(2): 209-213. Available on: https://www.veterinaryworld.org/Vol.10/February-2017/11.pdf
- Selvam, R.M., S.K. Onteru, V. Nayan, M. Sivakumar and D. Singh. 2017. Exploration of luteining hormone in Murrah buffalo (*Bubalus bubalis*) urine: Extended surge window opens door for estrus prediction. *Gen. Comp. Endocr.*, **251**: 1-6. DOI: 10.1016/j.ygcen.2016.12.002
- Shashikumar, N.G., R.K. Baithalu, S. Bathla, S.A. Ali, A. Kumaresan, S. Kumar, B.R. Maharana, G. Singh, D.S.P. Kumar, S.K. Singh, S.S. Lathwal, L. Jaiswal, T.K. Mohanty and A.K. Mohanty. 2018. Global proteomic analysis of water buffalo (*Bubalus bubalis*) saliva at different stages of estrous cycle using high throughput mass spectrometry. *Theriogenology*, **110**: 52-60. DOI: 10.1016/j.theriogenology.2017.12.046
- Siddiky, M.D. and M.O Faruque. 2018. Buffaloes for dairying in South Asia: Potential, challenges and way forward. *SAARC Journal of Agriculture*, **15**(2): 227-239. DOI: 10.3329/sja.v15i2.35167
- Singh, J., A. Nanda and G. Adams. 2000. The reproductive pattern and efficiency of female buffaloes. *Anim. Reprod. Sci.*, **60-61**: 593-604. DOI: 10.1016/s0378-4320(00)00109-3
- Singh, R. and A.S. Nanda. 1993. Environmental variables governing seasonality in buffalo breeding. *J. Anim. Sci.*, **71**: 119.
- Sonna, L.A., J. Fujita, S.L. Gaffin and C.M. Lilly. 2002. Invited review: Effects of heat and cold stress on mammalian gene expression. *J. Appl. Physio.*, **92**(4): 1725-1742. DOI: 10.1152/japplphysiol.01143.2001

- Souza, A.H., E.P.B. Silva, A.P. Cunha, A. Gumen, H. Ayres, D.J. Brusveen, J.N. Guenthen and M.C. Wiltbank. 2011. Ultrasonographic evaluation of endometrial thickness near timed AI as a predictor of fertility in high-producing dairy cows. *Theriogenology*, 75(4): 722-733. DOI: 10.1016/j. theriogenology.2010.10.013
- Spicer, L.J., S. Sudo, P.Y. Aad, L.S. Wang, S.Y. Chun, I.B. Shlomo, C. Klein and A.J.W. Hsueh. 2009. The hedgehog-patched signaling pathway and function in the mammalian ovary: A novel role for hedgehog proteins in stimulating proliferation and steroidogenesis of theca cells. *Reproduction*, **138**(2): 329-339. DOI: 10.1530/REP-08-0317
- Srinivasan, M., S. Muthukumarb, G. Saibabaa, C. Manikkarajaa, M. Abdulkader, Akbarshac and G. Archunana. 2020. Salivary luteinizing hormone: An open window to detect oestrous period in buffalo. *Reprod. Domest. Anim.*, **55**(5): 647-651. DOI: 10.1111/rda.13649
- Suh, C.S., B. Sonntag and G.F. Erickson. 2002. The ovarian life cycle: a contemporary view. *Rev. Endocr. Metab. Dis.*, **3**(1): 5-12. DOI: 10.1023/a:1012719316332
- Suthar, V.S. and A.J. Dhami. 2010. Estrus detection methods in buffalo A review. *Vet. World*, **3**(2): 94-96. Available on: https://www.veterinaryworld.org/Vol.3/February/Estrus%20Detection%20Methods%20 in%20Buffalo.pdf
- Tedengren, M., B. Olsson, B. Bradley and L.Z. Zhou.
  1999. Heavy metal uptake, physiological response and survival of the blue mussel (*Mytilus edulis*) from marine and brackish waters in relation to the induction of heat-

- shock protein 70. *Hydrobiologia*, **393**: 261-269. DOI: 10.1023/A:1003583509218
- Tirindelli, R., M. Dibattista, S. Pifferi and A. Menini. 2009. From pheromones to behavior. *Physiol. Rev.*, **89**(3): 921-956. DOI: 10.1152/physrev.00037.2008
- Vadodaria, V.P., K. Janakiraman and N.C. Buch. 1978. Thyroid activity in relation to reproductive performance of Surti buffalo heifers (*Bubalus bubalis*)-protein bound iodine. *Indian J. Exp. Biol.* **16**(9): 986-988.
- Verma, K.K., S. Prasad, A. Kumaresan, T.K. Mohanty, S.S. Layek, T.K. Patbandha and S. Chand. 2014. Characterization of physicochemical properties of cervical mucus in relation to parity and conception rate in Murrah buffaloes. *Vet. World*, **7**(7): 467-471. Available on: https://www.veterinaryworld.org/Vol.7/July-2014/5.pdf
- Virmani, V.M., R.K. Malik and P. Singh. 2016. Effect of gonadotropin releasing hormone (Gnrh) preparations on induction of estrus and fertility in buffaloes under field conditions in Haryana. *Buffalo Bull.*, **35**(1): 93-100. Available on: https://kukrdb.lib.ku.ac.th/journal/BuffaloBulletin/search\_detail/result/331442
- Williams, C.J. and G.F. Erickson. 2012. *Endotext*, Available on: www.endotext.orgXu, J., C.V. Bishop, M.S. Lawson, B.S. Park and F. Xu. 2016. Anti-Mullerian hormone promotes pre-antral follicle growth, but inhibits antral follicle maturation and dominant follicle selection in primates. *Hum. Reprod.*, **31**(7): 1522-1530. DOI: 10.1093/humrep/dew100
- Yang. P. and S.K. Roy. 2004. Follicle stimulating hormone-induced DNA synthesis in the granulosa cells of hamster preantral follicles involves activation of cyclin-dependent

- kinase-4 rather than cyclin d2 synthesis. *Biol. Reprod.*, **70**(2): 509-517. DOI: 10.1095/biolreprod.103.023457
- Yang, P. and S.K. Roy. 2006. Transforming growth factor B1 stimulated DNA synthesis in the granulosa cells of preantral follicles: Negative interaction with epidermal growth factor. *Biol. Reprod.*, **75**(1): 140-148. DOI: 10.1095/biolreprod.105.050294
- Zeleznik, A.J. 2001. Follicle selection in primates: "many are called but few are chosen". *Biol. Reprod.*, **65**: 655-659. DOI: 10.1095/biolreprod65.3.655