THE REPRODUCTIVE PERFORMANCES OF MURRAH AND SWAMP BUFFALOES IN THAILAND

Thiamphop Kanloung¹, Duangkamol Taemchuay¹ Ranchuan Hengtrakunsin² and Piyada Tavitchasri^{1,*}

ABSTRACT

The aimed of this research was to study reproductive performances of Murrah and swamp buffaloes. The data of reproductive performances were collected from 98 buffaloes during period 2001 to 2013 on Murrah farm is located in Chachoengsoa province, Thailand were analyzed to study the effects of difference buffalo types on service per conception, age at calving, calf birth weight and calving interval. The service per conception was significantly (P<0.05) influenced by buffalo type only in 1st parity. Additionally, the service per conception and calving interval were reduced by the number of parity increase. The age at first calving of buffaloes in swamp buffalo type was significantly (P<0.05) higher than that of Murrah buffalo (4.16±0.89, 3.79±0.50 years). In case of calf birth weight at all parity, Murrah buffalo was lower than swamp buffalo and nonsignificant, except 2nd parity.

Keywords: *Bubalus bubalis*, buffaloes, reproductive performance, Murrah, swamp, Thailand

INTRODUCTION

River buffalo (Bubalus bubalis) is an economically important agriculture for developing countries, especially in Asia due their uses for dairy milk production, meat production and labor for agriculture. Murrah is the best breed of milk producing buffalo and were used for upgrading to improve swamp buffalo for milk production (Thiruvenkadan et al., 2010). The limitations of milk production in swamp buffalo include many conditions such as late maturity, prolonged calving interval, difficulties detecting heat that cause in a lot of service per conception (Chaikhun et al., 2012) and resulting in economic losses because reproductive performance is one of the most keys to profitable buffalo dairy industry (Abdall, 2003). The objective of this paper was to study reproductive performances of Murrah, swamp and crossbred (Murrah x swamp) buffaloes under intensive farm in Thailand.

MATERIALS AND METHODS

The data of reproduction was collected from 98 buffaloes from 2001 to 2013 on Murrah

¹King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon, Thailand, *E-mail: piyda.ta@kmitl.ac.th

²Murrah Dairy Company Limited, Plangyao, Chachoengsao, Thailand

alc
Π
þŋ
>
air
f d
3.) for reproductive performance of dairy l
ö
ŭ
na
DTI
rfć
e e
ē
14
ICI
đ
ro
ep
гr
fo
щ
(±S.E.) fc
IS
ar
ne
er
ar
nŀ
-SC
ıst
. Least-square means
Ц
Ļ.
ole
at
Tal

Faloes Service per conception Age at calving (years) Number Number Number Mean±S.E. Number Mean±S.E. Number Mean±S.E. Number Mean±S.E. Mean±S.E. Mean±S.E. 16 1.12±0.34 ^b 44 3.79±0.50 ^a 37 4.16±0.89 ^b 114 7.71±4.55 85 3.94±0.72 3.94±0.72 114 7.71±4.55 85 3.94±0.72 114 7.71±4.55 85 3.94±0.72 114 7.71±4.55 85 3.94±0.72 114 7.71±4.55 85 3.94±0.72 114 7.71±4.55 85 3.94±0.75 ^a 120 5.69±3.73 68 5.37±0.30 ^a 35 4.63±3.22 ^a 3.5.43±0.86 ^a 3.94±0.75 ^a 35 4.51±2.77 ^a 22 6.56±0.83 ^a 35 3.5.34±0.69 ^a 3.34±0.59 ^a 3.74±0.75 ^a 35 3.5.34±0.69 ^a 3.3 5.43±0.69 ^a 35 4.53±2.77 ^a 22				Reproduct	Reproductive performance	lance		
		conception	Age at c	alving (years)	Birth	Birth weight (kg)	Calving i	Calving interval (days)
159 8.05 ± 4.24^a 44 3.79 ± 0.50^a ed16 1.12 ± 0.34^b 44 3.79 ± 0.50^a ed16 1.12 ± 0.34^b 44 3.59 ± 0.60^a Total114 7.71 ± 4.55 85 3.94 ± 0.72 Total114 7.71 ± 4.55 85 3.94 ± 0.72 fotal114 7.71 ± 4.55 85 3.94 ± 0.72 fotal114 7.71 ± 4.55 85 3.94 ± 0.72 fotal11 6.14 ± 3.82^a 33 5.4 ± 0.59^a ed4 1.25 ± 0.50^b 2 4.67 ± 0.30^a ed45 5.37 ± 3.49^a 33 5.43 ± 0.85^a fotal120 5.69 ± 3.73 68 5.37 ± 0.73 fotal120 5.69 ± 3.73 68 5.37 ± 0.73 fotal90 4.58 ± 3.04 43 6.52 ± 0.72 fotal90 4.58 ± 3.04 43 6.52 ± 0.72 fotal90 4.58 ± 3.04 43 6.52 ± 0.72^a fotal72 3.53 ± 2.05^a 11 7.54 ± 0.75^a fotal72 3.69 ± 2.24^a 24 7.53 ± 0.79^a fotal72 3.69 ± 2.24^a 24 7.53 ± 0.79^a fotal72 3.69 ± 2.24^a 6 8.65 ± 0.94^a fotal75 3.69 ± 2.24^a 6 8.65 ± 0.94^a	Number (head)	Mean±S.E.	Number (head)	Mean±S.E.	Number (head)	Mean±S.E.	Number (head)	Mean±S.E.
1 59 8.05 ± 4.24^a 44 3.79 ± 0.50^a ed 16 1.12 ± 0.34^b 4 3.59 ± 0.60^a ed 16 1.12 ± 0.34^b 4 3.59 ± 0.60^a red 39 9.89 ± 3.29^c 37 4.16 ± 0.89^b Total 114 7.71 ± 4.55 85 3.94 ± 0.72 red 4 7.71 ± 4.55 85 3.94 ± 0.72 red 4 1.25 ± 0.50^b 2 4.67 ± 0.30^a ed 4 1.25 ± 0.50^b 2 4.67 ± 0.30^a otal 45 5.37 ± 3.49^a 33 5.43 ± 0.63^a otal 45 5.37 ± 3.49^a 33 5.43 ± 0.63^a otal 120 5.69 ± 3.73 68 5.37 ± 0.63^a otal 120 5.69 ± 3.22^a 5.63 ± 0.63^a otal 120 5.54 ± 3.04^a 6.52 ± 0.63^a otal 90 4.58 ± 3.04 43 6.52 ± 0.72^a otal 90 4.5				1	st Parity			
ed 16 1.12 \pm 0.34 ^b 4 3.59 \pm 0.60 ^a Total 114 7.71 \pm 4.55 85 3.94 \pm 0.72 Total 114 7.71 \pm 4.55 85 3.94 \pm 0.72 Total 114 7.71 \pm 4.55 85 3.94 \pm 0.72 Total 114 7.71 \pm 4.55 85 3.94 \pm 0.72 Total 114 1.25 \pm 0.50 ^b 2 4.16 \pm 0.89 ^b ed 4 1.25 \pm 0.50 ^b 2 4.67 \pm 0.30 ^a ed 45 5.37 \pm 3.49 ^a 33 5.43 \pm 0.85 ^a fotal 120 5.69 \pm 3.73 68 5.37 \pm 0.73 fotal 120 5.69 \pm 3.74 33 5.43 \pm 0.61 ^a fotal 120 5.69 \pm 3.74 33 5.43\pm0.63 ^a fotal 120 5.69 \pm 3.74 68 5.37\pm0.73 fotal 90 4.51 \pm 2.77 ^a 222 6.56\pm0.61 ^a fotal 90 4.51 \pm2.24 7.52 \pm 0.72 fotal 7.5 3.96 \pm 2	59	8.05±4.24ª	44	$3.79{\pm}0.50^{a}$	94	27.32±4.97 ^a	ı	1
399.89 \pm 3.29°374.16 \pm 0.89Total1147.71 \pm 4.55853.94 \pm 0.721716.14 \pm 3.82°3.94 \pm 0.721716.14 \pm 3.82°3.94 \pm 0.72ed41.25 \pm 0.50°24.67 \pm 0.30°ed41.25 \pm 0.50°24.67 \pm 0.30°ed455.37 \pm 3.49°335.34 \pm 0.59°o455.37 \pm 3.49°335.43 \pm 0.68°fotal1205.69 \pm 3.73685.37 \pm 0.73fotal1205.69 \pm 3.73685.37 \pm 0.73fotal1205.69 \pm 3.73685.37 \pm 0.73fotal1205.69 \pm 3.73685.37 \pm 0.73fotal904.58 \pm 3.04436.52 \pm 0.72fotal904.58 \pm 3.04436.52 \pm 0.75°fotal723.96 \pm 2.56°117.52 \pm 0.85°fotal723.96 \pm 2.56°137.52 \pm 0.85°fotal723.96 \pm 2.24°7.53 \pm 0.79°fotal723.96 \pm 2.24°7.53 \pm 0.79°fotal723.96 \pm 2.64°68.65 \pm 0.94°fotal723.66 \pm 2.64°68.65 \pm 0.63°fotal728.66 \pm 2.64°	16		4	$3.59{\pm}0.60^{a}$	26	30.19 ± 9.44^{b}	ı	1
Total 114 7.71 ±4.55 85 3.94 ±0.72 r 71 6.14 $\pm3.82^a$ 33 5.34 $\pm0.59^a$ ed 4 1.25 $\pm0.50^b$ 2 4.67 $\pm0.30^a$ ed 45 5.37 $\pm3.49^a$ 33 5.43 $\pm0.85^a$ ocid 45 5.37 $\pm3.49^a$ 33 5.43 $\pm0.85^a$ fotal 120 5.69 ±3.73 68 5.37\pm0.73 r 45 5.37 $\pm3.49^a$ 33 5.43 $\pm0.85^a$ rotal 120 5.69 ±3.73 68 5.37\pm0.73 r 45 5.37 $\pm3.23^a$ 5.4 6.65 $\pm0.38^a$ rotal 120 5.69 $\pm3.23^a$ 21 6.48 $\pm0.61^a$ r 55 4.51 $\pm2.77^a$ 22 6.56\pm0.83^a rotal 90 4.58 ±3.04 43 6.52\pm0.72 r 55 3.54 ±3.04 43 6.52\pm0.72 r 45 3.56\pm2.56^a 13 7.52 $\pm0.85^a$ r 27 3.66 $\pm2.56^a$	39	9.89±3.29°	37	4.16 ± 0.89^{b}	48	28.33 ± 6.36^{ab}	ı	1
171 6.14 ± 3.82^a 33 5.34 ± 0.59^a ed4 1.25 ± 0.50^b 2 4.67 ± 0.30^a ed45 5.37 ± 3.49^a 33 5.43 ± 0.85^a Total120 5.69 ± 3.73 68 5.37 ± 0.73 Total120 5.69 ± 3.73 68 5.37 ± 0.73 Total120 5.69 ± 3.73 68 5.37 ± 0.73 Total90 4.53 ± 3.22^a 21 6.48 ± 0.61^a Total90 4.58 ± 3.04 43 6.52 ± 0.72 Total90 4.58 ± 3.04 43 6.52 ± 0.72 Total90 4.58 ± 3.04 43 6.52 ± 0.72 Total90 4.58 ± 3.04 43 6.52 ± 0.72 Iotal70 3.53 ± 2.05^a 11 7.54 ± 0.75^a Iotal72 3.69 ± 2.26^a 13 7.52 ± 0.85^a Iotal72 3.69 ± 2.24 24 7.53 ± 0.79 Iotal72 3.69 ± 2.24 24 7.53 ± 0.79 Iotal72 3.69 ± 2.24^a 6 8.72 ± 0.63^a Iotal72 3.64 ± 1.90^a 4 8.72 ± 0.63^a Iotal19 4.26 ± 2.64^a 6 8.65 ± 0.94^a	114	7.71±4.55	85	$3.94{\pm}0.72$	168	28.05±6.29	ı	1
171 6.14 ± 3.82^a 33 5.34 ± 0.59^a ed4 1.25 ± 0.50^b 2 4.67 ± 0.30^a ed45 5.37 ± 3.49^a 33 5.43 ± 0.85^a rotal120 5.69 ± 3.73 68 5.37 ± 0.73 Total120 5.69 ± 3.73 68 5.37 ± 0.73 rotal35 4.63 ± 3.22^a 21 6.48 ± 0.61^a rotal 55 4.63 ± 3.22^a 21 6.48 ± 0.61^a rotal 35 4.51 ± 2.77^a 22 6.56 ± 0.83^a rotal 90 4.58 ± 3.04 43 6.52 ± 0.72 rotal 90 4.58 ± 3.04 43 6.52 ± 0.72 rotal 90 4.58 ± 3.04 43 6.52 ± 0.72 rotal 70 3.53 ± 2.05^a 11 7.54 ± 0.75^a rotal 72 3.69 ± 2.26^a 13 7.52 ± 0.85^a rotal 72 3.69 ± 2.24 24 7.53 ± 0.79 rotal 72 3.69 ± 2.24^a 6 8.72 ± 0.63^a rotal 36 3.44 ± 1.90^a 4 8.72 ± 0.63^a rotal 19 4.26 ± 2.64^a 6 8.65 ± 0.94^a				5	2 nd Parity			
ed4 1.25 ± 0.50^b 2 4.67 ± 0.30^a 45 5.37 ± 3.49^a 33 5.43 ± 0.85^a Total 120 5.69 ± 3.73 68 5.37 ± 0.73 Total 120 5.69 ± 3.73 68 5.37 ± 0.73 Total 55 4.63 ± 3.22^a 21 6.48 ± 0.61^a 55 4.51 ± 2.77^a 21 6.48 ± 0.61^a Total 90 4.58 ± 3.04 43 6.52 ± 0.72 Total 90 4.58 ± 3.04 43 7.54 ± 0.75^a Total 7.53 ± 2.05^a 11 7.54 ± 0.75^a Total 72 3.69 ± 2.26^a 13 7.52 ± 0.85^a Total 72 3.69 ± 2.24 24 7.53 ± 0.79 Total 72 3.69 ± 2.24^a 6.6 8.72 ± 0.63^a Total 36 3.44 ± 1.90^a 4 8.72 ± 0.63^a Total 19 4.26 ± 2.64^a 6 8.65 ± 0.94^a	71	6.14 ± 3.82^{a}	33	5.34±0.59ª	75	29.30±6.11ª	75	587.65±178.80 ^a
45 5.37 ± 3.49^a 33 5.43 ± 0.85^a Total 120 5.69 ± 3.73 68 5.37 ± 0.73 Total 55 4.63 ± 3.22^a 5.48 ± 0.61^a 55 4.63 ± 3.22^a 21 6.48 ± 0.61^a 55 4.51 ± 2.77^a 22 6.56 ± 0.83^a 35 4.51 ± 2.77^a 22 6.56 ± 0.83^a Total 90 4.58 ± 3.04 43 6.52 ± 0.72 10 90 4.58 ± 3.04 43 6.52 ± 0.72 10 45 3.53 ± 2.05^a 11 7.54 ± 0.75^a 10 45 3.53 ± 2.05^a 11 7.52 ± 0.85^a 10 72 3.96 ± 2.56^a 13 7.52 ± 0.85^a 10 72 3.69 ± 2.24 24 7.53 ± 0.79 10 36 3.44 ± 1.90^a 4 8.72 ± 0.63^a 10 36 3.44 ± 1.90^a 4 8.72 ± 0.63^a 10 19 4.26 ± 2.64^a 6 8.65 ± 0.94^a	4	1.25 ± 0.50^{b}	2	$4.67{\pm}0.30^{a}$	7	31.85 ± 6.17^{ab}	7	507.00 ± 158.16^{a}
Total120 5.69 ± 3.73 68 5.37 ± 0.73 r 55 4.63 ± 3.22^a 21 6.48 ± 0.61^a 35 4.51 ± 2.77^a 22 6.56 ± 0.83^a Total 90 4.58 ± 3.04 43 6.52 ± 0.72 r 90 4.58 ± 3.04 43 6.52 ± 0.72 r 90 4.58 ± 3.04 43 6.52 ± 0.72 r 7.53 ± 2.05^a 11 7.54 ± 0.75^a r 27 3.96 ± 2.56^a 13 7.52 ± 0.85^a rotal 72 3.69 ± 2.24 24 7.53 ± 0.79 r 36 3.44 ± 1.90^a 4 8.72 ± 0.63^a r 36 3.44 ± 1.90^a 4 8.72 ± 0.63^a r 19 4.26 ± 2.64^a 6 8.65 ± 0.94^a	45	5.37±3.49ª	33	$5.43{\pm}0.85^{a}$	47	33.57 ± 4.97^{b}	46	526.39±171.49 ^a
I55 4.63 ± 3.22^a 21 6.48 ± 0.61^a 55 4.51 ± 2.77^a 22 6.56 ± 0.83^a 35 4.51 ± 2.77^a 22 6.56 ± 0.83^a 7.51 90 4.58 ± 3.04 43 6.52 ± 0.72 10 4.58 ± 3.04 43 6.52 ± 0.72 10 4.5 3.53 ± 2.05^a 11 7.54 ± 0.75^a 11 7.53 ± 0.24 13 7.52 ± 0.85^a 10 72 3.69 ± 2.24 24 7.53 ± 0.79 10 36 3.44 ± 1.90^a 4 8.72 ± 0.63^a 10 36 3.44 ± 1.90^a 4 8.72 ± 0.63^a 10 19 4.26 ± 2.64^a 6 8.65 ± 0.94^a	120	5.69±3.73	68	5.37±0.73	129	30.99 ± 6.03	128	561.22±176.76
1 55 4.63 ± 3.22^a 21 6.48 ± 0.61^a 35 3.51 ± 2.77^a 22 6.56 ± 0.83^a $10tal$ 90 4.58 ± 3.04 43 6.52 ± 0.72 $10tal$ 90 4.58 ± 3.04 43 6.52 ± 0.72 $10tal$ 45 3.53 ± 2.05^a 11 7.54 ± 0.75^a $10tal$ 27 3.06 ± 2.56^a 13 7.52 ± 0.85^a $10tal$ 72 3.69 ± 2.24 24 7.53 ± 0.79 $10tal$ 72 3.69 ± 2.24 24 7.53 ± 0.79 $10tal$ 72 3.69 ± 2.24^a 6 8.72 ± 0.63^a $10tal$ 72 3.69 ± 2.24^a 6 8.65 ± 0.94^a				^m	3 rd Parity			
35 4.51 ± 2.77^a 22 6.56 ± 0.83^a Total 90 4.58 ± 3.04 43 6.52 ± 0.72 10 4.58 ± 3.04 43 6.52 ± 0.72 10 45 3.53 ± 2.05^a 11 7.54 ± 0.75^a 10 27 3.96 ± 2.56^a 13 7.52 ± 0.85^a Total 72 3.69 ± 2.24 24 7.53 ± 0.79 10 72 3.69 ± 2.24 24 7.53 ± 0.79 10 36 3.44 ± 1.90^a 4 8.72 ± 0.63^a 10 19 4.26 ± 2.64^a 6 8.65 ± 0.94^a	55	4.63±3.22 ^a	21	$6.48{\pm}0.61^{a}$	60	31.13 ± 6.74^{a}	60	480.36 ± 168.70^{a}
\odot tal90 4.58 ± 3.04 43 6.52 ± 0.72 \circ tal 45 3.53 ± 2.05^a 11 7.54 ± 0.75^a 45 3.96 ± 2.56^a 13 7.52 ± 0.85^a \odot tal 72 3.96 ± 2.24 24 7.53 ± 0.79 \odot tal 72 3.69 ± 2.24 6 8.72 ± 0.63^a 19 4.26 ± 2.64^a 6 8.65 ± 0.94^a	35	4.51±2.77 ^a	22	$6.56{\pm}0.83^{a}$	39	34.05 ± 6.84^{a}	37	481.05±135.07 ^a
$\begin{array}{ c c c c c c c c } \hline 45 & 3.53 \pm 2.05^{a} & 11 & 7.54 \pm 0.75^{a} \\ \hline 45 & 3.53 \pm 2.05^{a} & 11 & 7.52 \pm 0.85^{a} \\ \hline 27 & 3.96 \pm 2.56^{a} & 13 & 7.52 \pm 0.85^{a} \\ \hline 012 & 72 & 3.69 \pm 2.24 & 24 & 7.53 \pm 0.79 \\ \hline 36 & 3.44 \pm 1.90^{a} & 4 & 8.72 \pm 0.63^{a} \\ \hline 19 & 4.26 \pm 2.64^{a} & 6 & 8.65 \pm 0.94^{a} \\ \hline \end{array}$	90	4.58±3.04	43	6.52±0.72	66	32.28±6.90	67	480.62±155.99
$\begin{array}{ c c c c c c c c } & 45 & 3.53 \pm 2.05^{a} & 11 & 7.54 \pm 0.75^{a} \\ & 27 & 3.96 \pm 2.56^{a} & 13 & 7.52 \pm 0.85^{a} \\ \hline & 21 & 3.69 \pm 2.24 & 24 & 7.53 \pm 0.79 \\ \hline & 36 & 3.44 \pm 1.90^{a} & 4 & 8.72 \pm 0.63^{a} \\ \hline & 19 & 4.26 \pm 2.64^{a} & 6 & 8.65 \pm 0.94^{a} \\ \hline \end{array}$				4	4 th Parity			
$ \begin{array}{ c c c c c c c c c c c } & 27 & 3.96\pm2.56^a & 13 & 7.52\pm0.85^a \\ \hline \mbox{fotal} & 72 & 3.69\pm2.24 & 24 & 7.53\pm0.79 \\ \hline \mbox{fotal} & 36 & 3.44\pm1.90^a & 4 & 8.72\pm0.63^a \\ \hline \mbox{fotal} & 19 & 4.26\pm2.64^a & 6 & 8.65\pm0.94^a \\ \hline \end{array} $	45	3.53±2.05 ^a	11	7.54±0.75ª	49	31.87 ± 5.79^{a}	49	448.83 ± 133.17^{a}
Total72 3.69 ± 2.24 24 7.53 ± 0.79 1 36 3.44 ± 1.90^{a} 4 8.72 ± 0.63^{a} 1 19 4.26 ± 2.64^{a} 6 8.65 ± 0.94^{a}	27	3.96±2.56ª	13	7.52±0.85ª	28	33.23±7.27 ^a	28	447.64±98.51 ^a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	72	3.69±2.24	24	7.53±0.79	77	32.37±6.36	77	448.40±121.03
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				S.	5 th Parity			
19 4.26±2.64 ^a 6	36		4	8.72±0.63ª	34	31.44±6.92ª	36	412.88 ± 70.84^{a}
	19		9	$8.65{\pm}0.94^{a}$	18	33.47 ± 6.86^{a}	19	499.68±151.90 ^b
3.72 ± 2.19 10	55	3.72±2.19	10	$8.68{\pm}0.79$	52	$32.14{\pm}6.90$	55	442.87±112.60

				Reproduc	Reproductive performance	nance		
T.m. of huffolood	Service pe	Service per conception	Age at c	Age at calving (years)	Birth	Birth weight (kg)	Calving i	Calving interval(days)
Type of buildings	Number (head)	Mean±S.E.	Number (head)	Mean±S.E.	Number (head)	Mean±S.E.	Number (head)	Mean±S.E.
					6 th Parity			
Murrah	23	$2.78{\pm}1.70^{a}$	ю	10.21 ± 0.22^{a}	24	29.48±10.45 ^a	25	412.64±94.52 ^a
swamp	10	$3.50{\pm}2.12^{a}$	2	$9.38{\pm}0.89^{ m b}$	10	32.75 ± 6.06^{b}	10	452.70±148.82 ^a
Total	33	$3.00{\pm}1.83$	5	9.88 ± 0.48	34	30.44 ± 9.40	35	424.08±111.83
					7 th Parity			
Murrah	12	$2.33{\pm}1.30^{a}$	1	I	12	$33.00{\pm}4.86^{a}$	12	386.58±43.97ª
swamp	4	$3.00{\pm}2.00^{a}$		ı	4	$38.00{\pm}3.36^{a}$	4	409.50±75.91ª
Total	16	2.50±1.46	1	I	16	34.25±4.05	16	392.31±51.72
					8 th Parity			
Murrah	4	$1.50{\pm}0.57^{\mathrm{a}}$		I	4	33.75±2.06ª	4	415.75 ± 129.00^{a}
swamp	3	$3.33{\pm}0.57^{\rm b}$		I	3	34.66 ± 1.15^{a}	3	488.66 ± 157.09^{a}
Total	7	2.28 ± 1.11	I	I	7	$34.14{\pm}1.67$	7	447.00±134.40

Table 1. Least-square means (±S.E.) for reproductive performance of dairy buffalo. (Continue.)

farm located in Chachoengsoa province Thailand, which is the only one intensive buffalo dairy farm from Murrah with swamp and crossbred buffaloes. The reproductive performance parameters such as age at first calving, gestation length, service per conception and calf birth weight were analyses as least-mean (±S.E.). The types of buffalo were also investigated assuming the following mathematical model:

$$y_{ij} = \mu + bg_i + e_{ijk}$$

where y_{ij} = Observation of reproductive performances; μ = Overall population means; bg_i = Effect of jth type of buffalo; e_{iik} = Random error

RESULTS AND DISCUSSIONS

The overall least-square mean for age at first calving was 3.94±0.72 years (n=85) (Table 1), which it same value (47.1±8 months) reported for swamp buffaloes on the same farm (Chaikhun et al., 2012). This is in agreement with the findings in Sabah, Malaysia (Othman et al., 2014). The type of buffalo was found to have significant (P < 0.05) effect on age at first calving, service per conception and calf birth weight at 1st parity. It shows that age at first calving, service per conception and calf birth weight of crossbred buffalo had better than Murrah and swamp buffalo. The results of the present research were not in agreement with the results of Dung (2005). In the 4th to 8th parity, service per conception and calving interval of Murrah had better than swamp buffalo. It was reported that the calving interval for buffalo ranged between 559.6 days for Murrah in India (Thiruvenkdadan et al., 2010) and 740 days for Murrah crossbred in Sabah, Malaysia (Suhaimi and Saad, 2012).

REFERENCES

- Abdalla, E.B. 2003. Improving the reproductive performance of Egyptian buffalo cows by changing the management system. *Anim. Reprod. Sci.*, **75**(1-2): 1-8. DOI: 10.1016/ s0378-4320(02)00225-7.
- Chaikhun, T., R. Hengtrakunsin, F.D. Renis, M. Techakumphu and S. Suadsong. 2012.
 Reproductive and dairy performance of Thai swamp buffaloes under intensive farm management. *Thai J. Vet. Med.*, 42(1): 81-85. Available on: https://www.thaiscience.info/Journals/Article/TJVM/10889428.pdf
- Dung, C.A. 2005. Buffalo in Vietnam: Status and SomeAppliedReproductiveBiotechnologies.
 Department of Biotechnology Research and Application. Institute of Agricultural Sciences for Southern Vietnam, Vietnam.
- Othman, R., M.Z.A. Bakar, A. Kasim and M. Zamri-Saad. 2014. Improving the reproductive performance of buffaloes in Sabah, Malaysia. *Journal of Animal Health* and Production, 2(1): 1-4. DOI: 10.14737/ journal.jahp/2014/2.1.1.4
- Suhaimi, A.Z.A.S. and M.Z. Saad. 2012. Reproductive performance of Murrah crossed buffalo at buffalo breeding centre, Telupid, Sabah. In 7th Proceeding of the Seminar on Veterinary Science, Selangor, Malaysia.
- Thiruvenkadan, A.K., S. Panneerselvam, R. Rajendran and N. Murali. 2010. Analysis on the productive and reproductive traits of Murrah buffalo cows maintained in the coastal region of India. *Applied Animal Husbandry and Rural Development*, 3: 1-5.