Abstract: Quantitative and qualitative evaluation of green muscadine fungus, *Metarhizium anisopliae* (GMF) collected by the spore separation machine was conducted to develop a biological control agent for the control of sugarcane longhorn stem borer (SLSB) *Dorysthenes buqueti*. The results showed that the number of GMF spores was decreased 29.84 percent after being filtered through the spore separator machine. Virulence and pathogenicity of GMF inoculum was then tested against SLSB larvae with 50-60 percent accumulative mortality after 30 days infection for the both spore suspension tested. Evaluation effect of tested formulations on viability of GMF conidia was hence taken place. After 12 months of storage at room temperature, GMF conidia obtained from spore separation machine mixed with sterile soil and coconut dust in different ratio was observed for its viability after 24 hours of incubation comparing with GMF sample kept without agent. The best formulation (mixing of soil and coconut dust at 3:1 ratio) gave the best performance with 58.47 percent of germination with the virulence SLSB larvae providing 60 percent of accumulative mortality whereas no mortality was observed from conventional product. This study has demonstrated that GMF could be mass produced in large quantity on rice substrate, then conidia separated and kept in suitable agent for at least 12 months with enough viability and pathogenicity for SLSB control.

Keywords: Biological control, Sugarcane insect pest, Entomopathogenic fungi
โดยมีค่าการตาย 50-60 เปรียบชัต สำหรับการนำเหลืองสีเขียวเก็บรักษาในรูปแบบสิ่งที่เก็บได้เป็นเวลา 12 เดือน พบว่าการเปลี่ยนค่าการตายของเชื้อราในกล่องกับที่เก็บรักษาแบบที่เก็บรักษาได้ (3:1)
ผลเงินที่พบว่า 2 เปลี่ยนสีที่มีการรักษาที่สูงสุดเท่ากับ 58.47 เปลี่ยนสี และสามารถเก็บรักษาได้ในระยะเวลานานกว่า
จะทำด้านล่างได้ 60 เปรียบชัต ขณะที่รูปแบบของกล่องกับที่เก็บรักษาได้ไม่ภายในคลื่นของ D. buqueti ดังนั้น
รูปแบบสิ่งที่เก็บรักษาในนี้สามารถเก็บรักษาได้ในระยะเวลาถึง 1 ปี โดยยังคงประสิทธิภาพการเก็บรักษาที่นั้นต้อง
แนวความกับทำด้านล่างได้อย่างในประสิทธิภาพ

คำสำคัญ: การควบคุมโดยเชื้อไวรัส แบ่งตัวรู้ชัย เชื้อราโภคโมเลกุล

คำนำ
เชื้อราโภคโมเลกุล (Entomopathogenic fungi) เป็นกลุ่มของเชื้อราที่มีในธรรมชาติ มีความ
สำคัญในการควบคุมปัจจัยของแมลง โดยไม่พิจารณา
ในสัดส่วน ปัจจัยสิ่งมีชีวิตเพื่อสิ่งมีชีวิตและศูนย์ที่
หลายชนิด มีความมีอำนาจสูง ปลอดภัยต่อแมลงที่
มีประโยชน์ ควบคุม การที่ไม่มี
ต่อกัน สามารถนำมาใช้ร่วมกับสารเคมีเพื่อแมลง
ได้ง่าย ตัวเชื้อโรคมีความสามารถในการ
ใช้ถูกต้อง (ทิพย์ศิริ และคณะ, 2546) สำหรับเชื้อ
ราเขียว Metarhizium anisopliae เป็นเชื้อราที่มีสี
เขียวแทน ที่มีการนำมาใช้ในการควบคุมแมลงตัวรู้
ชัยหลายชนิด ตัวอย่าง แมลงในอันดับ Diptera เช่น
ยุงตลาดบ้าน ยุงตลาดสวน Aedes albopictus ยุงจำคา
Culex quinquefasciatus ยุงในแปลง Anopheles
gambiae (Scholte et al., 2003; Scholte et al.,
2007) อันดับ Hemiptera เช่น เหยี่ยราเคลียเนียนาด้า
Nilaparvata lugens (เทพธิดา และอัจฉรียา, 2550)
ยุงแมลงชนิด Bemisia argentifoli (Wraft et al., 2000)
และอันดับ Coleoptera เช่น ตัวแมลงม่วงขวา
Rhizobium rhizocornc L. (...) สามารถควบคุม
Scolytus scolytes (F.) (Doberski, 1981) แล้วเป็น
สาเหตุของโรคที่มีประสิทธิภาพสามารถทำลายตัว
หมู่อย่างเช่นทำด้านล่างตัว
Dorythesis buqueti (Guerin) ซึ่งเป็นแมลงตัวรู้ชัยของเชื้อรา (Kemasa, 2016) ได้เห็นที่ด้านล่างที่จะใช้สิ่งที่เก็บรักษา
โดยเฉพาะอย่างยิ่งทำด้านล่างพบได้ใน 90 เปรียบชัตเป็นการควบคุมโดยเชื้อไวรัสที่มีประสิทธิภาพมาก

วิทยาศาสตร์เกษตรและด้านการจัดการ 2 (2) : 25-34 (2562)
ถูกรองและวิธีการ
การเตรียมมอบต่างหน่วยงานจะด้านต่อ
D. buqueti ที่ดีเครื่องเรือเข้าใจ M. anisopliae

เก็บรวบรวมหนอนต่างหน่วยงานจะด้านต่อ D. buqueti จากแปลงปลูกขี้ในเขต
จำลองกับแผนภูมิ (N14°02.077’
E099°55.255’) นำกลับมาใส่ตัวอย่างอาหารที่ไซน์ท (Southland Products, 2017) ในรูปแบบสารติด
ทดแทนขนาดต่อหน้านคุณภาพ 8 เซนติเมตร ดู 5 เซนติเมตร จำนวน 1 ตัวต่อกล่อง ในการทดลองการ
จำนวนกึ่ง 2522 องศาเซลเซียส เปลี่ยนอาหารทุกวัน 7 วัน
เป็นเวลา 1 เดือน เพื่อเป็นการเตรียมว่านอนไม่ติด
เข้าเครื่องเรือเข้าใจ M. anisopliae มาจากแปลง หนอนต่าง
หน่วยงานจะด้านต่อ D. buqueti ที่ใช้ทดสอบ
เป็นขนาดต่อหน้านคุณภาพ 7 ท่าการเพาะเลี้ยง ณ ศูนย์วิจัย
ควบคุมคุณคุณวิทยาโดยวิเคราะห์จังหวัด ภาคกลาง
มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตก้าแพงแสน
จ.นครปฐม

ส่วนที่ 1 การศึกษาคุณสมบัติเชิงปริมาณ คุณภาพ
และการก่อโรคของสเปรย์เชื้อร้ายก่อนและ
หลังผ่านเครื่องเรือเข้าใจ

การทดลองอย่างที่ 1.1 สีความเข้ม
x ในของสเปรย์ก่อนและหลังผ่านเครื่องเรือเข้าใจสเปรย์
นำเข้าเครื่องเรือเข้าใจ M. anisopliae จากผู้ เลี้ยงดูที่ขาวก้ายให้สุ่มกึ่งตัวที่เก็บคู่กัน 250 รูป เป็น
ไลโอลาและคู่คุณคุณวิทยาควบคุมด้วยคู่คุณคุณวิทยาเก็บคู่กัน 250 รูป
ภาคกลาง ขนาดน่ำกักตันเพื่อสกัด Triton X 0.05
เบอร์ซิ่มเป็นเวลา 15 นาที หลังจากการสเปรย์
แขวนลอดออกจากสัตว์เข้า นำสเปรย์แขวนลอดที่
ได้ไปตรวจวิเครื่อมความเข้มข้นของสเปรย์ จำนวน 10 ข้า
และนำสเปรย์แขวนลอดไปผ่านเครื่องเรือเข้าใจสเปรย์
(Uraichuen et al., 2018) ทำการตรวจวิเครื่อมความเข้ม
x ในของสเปรย์ที่ได้สั่งจากกลุ่มเครื่องมือแยก
เบียร์ที่ได้กับความเข้มข้นก่อนผ่านเครื่องเรือเข้า
ใจสเปรย์ และวิเคราะห์ความแปรปรวนด้วยสถิติ
Dependent-Sample t test

การทดลองอย่างที่ 1.2 ศึกษาคุณภาพการ
ออกของเชื้อร้ายเข้าใจ M. anisopliae ก่อนและหลัง
ผ่านเครื่องเรือเข้าใจ นำสเปรย์จากแปลงหลังสกัด
และหลังผ่านเครื่องเรือเข้าใจกับ PDA แล้วเก็บที่ตู้ประจุของ
ของน้ำอาหารด้วยแหล่งแล้วเก็บบางเลือก ปล่อยไว้ที่
อุณหภูมิ 25 องศาเซลเซียส เป็นเวลา 24 ชั่วโมง จากนั้น
ดัดลูกอาหาร PDA เป็นส่วนเทียบขนาด 1x1
เซนติเมตร จำนวน 3 ชิ้นต่อ 1 จำนวนสเปรย์เชื้อร้าย
ทั้งหมด 13 จำนวนสเปรย์เชื้อร้ายรุ่นงานแบ่ง
สเปรย์ โดยหน่วยต้านไม่สิ่งเรียบร้อย หลัง Lactophenol
cotton blue บริบัง 0.1 มิลลิลิตร ปิดหัวด้วย
กระป๋องสเปรย์ นำจำนวนสเปรย์ที่ออกย้ายให้
กล่องจุลทรรศน์ จากจำนวน 300 สเปรย์ โดยสเปรย์ที่
ซึ่งเรียบร้อยจากความแปรปรวนของ germ tube ติดอาว
มากกว่าขนาดความรุ่นงานของสเปรย์ (นิวเมตา, 2559)
ด้วยสุทธิที่ได้ให้แก่ความแปรปรวนด้วยสถิติ
Dependent-Sample t test

การทดลองอย่างที่ 1.3 การทดสอบ
ประสิทธิภาพการเข้าก่อกำเนิดของเชื่อร้ายเข้าใจ
M. anisopliae กับหนอนต่างหน่วยงานจะด้าน
ต่อ D. buqueti นำสเปรย์จากเชื้อร้ายเข้าใจ
M. anisopliae ก่อนและหลังผ่านเครื่องเรือเข้าใจสเปรย์
และสเปรย์จากปุ๋ยทางชีวภาพ (pathogenic bioassay)
ด้วยก่อก่อกับหนอนต่างหน่วยงานจะด้านต่อ
ชื่อ D. buqueti วัย 7 เดือนสเปรย์แช่ละลายน้ 20
นำสเปรย์เชื้อร้ายเข้าใจ M. anisopliae ก่อนและหลัง
ผ่านเครื่องเรือเข้าใจปรับความเข้มข้นให้ได้ 1×10⁶
สเปรย์มีสถิติกับจำนวนสเปรย์แช่ละลายน้ บริบัง 80
มิลลิลิตร กลางตัวสเปรย์ที่แช่ละลายน้ จำนวน 7 (Kemasa, 2016) จำนวน 10 ตัว ซึ่ง 10 ตัว
ไม่ได้รับการทดลองแช่ละลายน้ (ชุดควบคุม) ส่งผล
การตายของหนอนต่างหน่วยงานจะด้านต่อ
ชื่อ D. buqueti บันทึกผลทุกกลุ่มเป็นเวลา 20 วัน
นำผลการ
ตายของหนอนไปคำนวณผลประโยชน์ต่างหากว่าสะสม
ของหนอนต่างหน่วยงานจะด้านต่อ D. buqueti
Table 1 Treatments applied for germination tests of Green muscadine fungus (GMF), *Metarhizium anisopliae* and pathogenic assay on mortality of 7th instar larvae of Dorycthenes buqueti

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>GMF massed on rice half cooked (conventional)³</td>
</tr>
<tr>
<td>T2</td>
<td>Pure spore powder³</td>
</tr>
<tr>
<td>T3</td>
<td>Soil:Coconut dust (4:0) + pure spore powder 0.2 %²</td>
</tr>
<tr>
<td>T4</td>
<td>Soil:Coconut dust (3:1) + pure spore powder 0.2 %²</td>
</tr>
<tr>
<td>T5</td>
<td>Soil:Coconut dust (1:1) + pure spore powder 0.2 %²</td>
</tr>
<tr>
<td>T6</td>
<td>Soil:Coconut dust (1:3) + pure spore powder 0.2 %²</td>
</tr>
<tr>
<td>T7</td>
<td>Soil:Coconut dust (0:4) + pure spore powder 0.2 %²</td>
</tr>
</tbody>
</table>

³ Use concentration 1×10³ spore/milliliter.
² Use pure spore powder 0.2 percent of initial weight (10 g.).

การทดลองย่อยที่ 2.1 การทดลองรูปแบบวิ่งกันที่เหมาะสมต่อการถูกโจมตีของเชื้อรา

ป้องกันที่เหมาะสมต่อการถูกโจมตีของเชื้อรา

Metarhizium anisopliae ด้วยการเก็บรักษาในรูปแบบต่างๆ ตัวการเก็บรักษาในรูปแบบต่างๆ 7 กรมวินิจฉัย (Table 1) นั่นช่วยให้เก็บรักษาที่เหมาะสมต่อการถูกโจมตีที่ 2.1 ว่าเวลา 1, 2, 3 และ 12 เดือน หลังจากการทดลอง วางแผนการทดลองแบบ Completely Randomized Design (CRD) ทดลองจำนวน 5 ขั้นตอนสุ่มที่ค่ายได้ในเก็บรักษาความแข็งแกร่งทางสถิติ และปรับตัวอย่างความแตกต่างค่าเฉลี่ยด้วยวิธี Duncan’s Multiple-Range Test (DMRT).
การทำทดลองอย่างอื่น 2.2 การทดสอบสุทธิทางชีวภาพ ต่อการก่อโรคของเมอร์ซิโอซิสจากเชื้อเข็ม Metarhizium anisopliae หลังเก็บรักษาในเวลาปัจจุบันค่วงหน่วยภาษาจากลำดับย่อย D. buqueti วัย 7 นาทีเชื้อเข็ม M. anisopliae จากการเก็บรักษาในรูปแบบต่างๆ (Table 1) ทำให้สเปอร์เชื้อเข็มได้ 99,6% ผลลัพธ์ หรือผลลัพธ์แบบผ่านกรองความเข้มข้น 0.05 ปอร์ซอล์ague ปริมาตร 0.5 มิลลิลิตร ปรับความเข้มข้นให้ได้ 1×10⁷ ปอร์ซอล์มิลลิลิตร จากนั้นทดลองกับทางชีวภาพต่อการก่อโรคของเมอร์ซิโอซิสจากเชื้อเข็ม M. anisopliae วิธีการคัดแยกผลการทดลองที่ 1.3 นับจำนวนหนอนแล้วสามารถจับคู่ 20 วัน

ผลการศึกษา

ส่วนที่ 1 ความเข้มข้นของสเปอร์ คุณภาพการก่อโรคเชื้อเข็ม M. anisopliae และการเข้าก่อโรคกับหนอนด้วงหนอนยาวจากลำดับย่อย

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concentration (Spore/ml) Mean±S.D.</th>
<th>Concentration (%)</th>
<th>GMF Germination (%)</th>
<th>Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before filter</td>
<td>1.91±0.16</td>
<td>100.00</td>
<td>99.60</td>
<td>50</td>
</tr>
<tr>
<td>After filter</td>
<td>1.34±0.77</td>
<td>70.16<sup>ⅱ</sup></td>
<td>99.19</td>
<td>60</td>
</tr>
</tbody>
</table>

^ⅰ Significantly different (p<0.05)

^ⅱ ns = Non significant

^ⅱ Percentage of mortality of the 7th instar larvae, cut off at day 20

^ⅱ Based on concentration of spore before being filtered by separation machine

การทดสอบก่อโรคนี้ในแหล่งของเชื้อเข็ม Metarhizium anisopliae ในกาวที่ 7 วัน ตัวหนอนเนื้อตาย ลำดับสีเขียวมีเข้มข้นจากตัวเดิม (Figure 1(a)) ลำดับสีเขียว (Figure 1(b)) เมื่อผ่านไป 7 วัน สเปอร์เชื้อเข็มที่ลำดับเป็นสีเขียวมีเปลี่ยนและยังคงเห็นไม่ชัด ที่สามารถวัดได้ในวันที่ 10 ปอร์ซอล์มีสีเขียวเดิมลำดับมองเห็นชัดเจน (Figure 1(c)) และค่อยๆเปลี่ยนเป็นสีเขียวในวันที่ 12 (Figure 1(d)) โดยก่อนและหลังผ่านกรองแล้วภาพของหนอนตัวหนอนยาวจากลำดับย่อย D. buqueti มีการตาย 50 และ 60 ปอร์ซอล์มีผลต่อการวิเคราะห์ (Table 2)
Figure 1 Infected symptoms of the 7th instar larvae of Dorysthenes buqueti, untreated and treated with Metarhizium anisopliae spore suspension
(a) Untreated treatment, the 7th instar larvae after spore suspension application at 7 days (b) 10 days (c) and 12 days (d)

Table 2 Percentage of germination (Mean±S.D.) of Green muscadine fungus (GMF), Metarhizium anisopliae after being kept for 1, 2, 3 and 12 months under room temperature 25±2 ºC (N=300)

<table>
<thead>
<tr>
<th>GMF Spore Formulation(^1)</th>
<th>Months(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>T1</td>
<td>83.60±3.56(^a)</td>
</tr>
<tr>
<td>T2</td>
<td>4.27±1.70(^b)</td>
</tr>
<tr>
<td>T3</td>
<td>76.20±5.85(^c)</td>
</tr>
<tr>
<td>T4</td>
<td>90.80±3.38(^d)</td>
</tr>
<tr>
<td>T5</td>
<td>86.53±5.46(^e)</td>
</tr>
<tr>
<td>T6</td>
<td>18.66±6.42(^f)</td>
</tr>
<tr>
<td>T7</td>
<td>25.20±9.58(^g)</td>
</tr>
</tbody>
</table>

\(^1\) See abbreviations details of GMF formulation in Table 1
\(^2\) Means within a column followed by the same superscript was not significantly different (p>0.05) by DMRT
Agricultural Science and Management J. 2 (2) : 25-34 (2019)

Figure 2 Percentage of mortality of 7th instar larvae Dorysthenes buqueti treated with Green muscadine fungus (GMF), Metarhizium anisopliae, cut off after day 20.
1/control = Distilled water + Triton X 0.05 percent
2/See abbreviations details of GMF formulation in Table 1

วิจารณ์
คุณภาพการกระทำเชื้อราเชื่อม M. anisopliae ก่อนและหลังผ่านเครื่องแยกปอร์บริษทึมีความ
ใกล้ชิดกับงานทดลองของ Ibrahim et al. (2015) ที่รายงานว่า การกระทำของปอร์บริษทึมดังกล่าวก่อนน้ำ
ไปทำให้เห็นมีปอร์บริษทึมกัดออก 98.2 ปอร์บริษทึม
และหลังจากน้ำไปทำให้เห็น มีความกระทำของปอร์
บริษทึม 83.5 ปอร์บริษทึม จากนั้นทำการตรวจสอบความ
เชื้อมของปอร์บริษทึมและหลังจากผ่านเครื่องมือแยก
ปอร์บริษทึมพบว่าก่อนผ่านเครื่องมือแยกปอร์บริษทึมเชื่อม
เชื่อม M. anisopliae มีความเข้มข้น 1.91×10⁷ ปอร์
บริษทึมต่อสิ่งมีชีวิต มากกว่าความเข้มข้นของปอร์บริษทึมพืช
เครื่องมือแยกปอร์บริษทึมที่มีความเข้มข้นเพียง 1.34×10⁷
ปอร์บริษทึมต่อสิ่งมีชีวิต ซึ่งความเข้มข้นที่ได้ในการทดลอง
นี้นั้นค่อนข้างถูกลดลงเมื่อสูงกว่าเกณฑ์ที่ยอม
กับความเข้มข้น 0.1×10⁷ ปอร์บริษทึมต่อสิ่งมีชีวิต

การทดสอบระบบเชื้อราเชื่อมกับเครื่องปะต่าง ๆ ของ
ปอร์บริษทึมเชื่อม M. anisopliae หลังผ่านเครื่อง
วิทยาศาสตร์เกษตรและวิทยาการจัดการ 2 (2) : 25-34 (2562)

ในขณะที่การทดสอบประสิทธิภาพของการก่อโรคในแมลงของเชื้อราเขียว M. anisopliae ที่มีต่อหนอนตัวกวางจะคล้ายตัวอื่น D. buqueti วัย 7 เมื่อก็บักานเชื้อยึดไว้เป็นระยะเวลา 12 วันพบว่า ในหุด ควบคุมทดลองกลุ่มผสม Triton X-0.05 เบอร์เชนชิลด์ ปรากฏว่าตัวหนอนไม่ตาย แต่ในสุราการกับรักษาในรูปแบบต่างๆ มีเบอร์เชนชิลด์ตัวของหนอน ในช่วงระหว่าง 30 ถึง 50 เบอร์เชนชิลด์ซึ่งไม่สามารถสอดคล้องกับ Kemasa (2016) ที่รายงานว่า ผลกระทบของนั้น ตัวหนอนตัวธาตุจะกลืนยืด D. buqueti วัยที่ไม่สูด ต้นตัว (วัย 7, 8 และ 9) มีเบอร์เชนชิลด์ตัวต่ำกว่า 50 เบอร์เชนชิลด์และยังคงสอดคล้องกับรายงานของ Hamid et al., (2005) พบว่า 셀เชื่อราเขียว M. anisopliae ที่เก็บรักษาไว้ที่จุนทูมิ 28 องศาเซลเซียสเป็นเวลา 15 เดือน แม้ว่า มีการของเบอร์เพียง 1.6 เบอร์เชนชิลด์แต่ยังสามารถมีประสิทธิภาพในการกัดตัวของ Oryctes rhinoceros ได้

สรุป

ความเข้มข้นของสเปรย์เชื้อราเขียว M. anisopliae ก่อนและหลังจากผ่านเครื่องผสมสเปรย์ ในช่วงปีงบประมาณมีความแตกต่างกัน 29.84 เบอร์เชนชิลด์แต่ละลดลงในคุณภาพการระลอกได้ 99 เบอร์เชนชิลด์ ส่วนในไข้มุกพบว่าแม้ว่าจะไม่ไปทำลายกับรักษาในรูปแบบเซอร์ชิลด์ต่ำกว่า 50 เบอร์เชนชิลด์ แต่ยังคงสอดคล้องกับรายงานของ Kemasa (2016) ที่บ่งบอกว่าความเข้มข้นของสเปรย์ M. anisopliae ในส่วนผสมของสีและชุมชนพอต่อการสูญเสียในสัตว์การกัดตัวคือ 2 เบอร์เชนชิลด์ ซึ่งเป็นสิ่งที่มีหลักฐานสนับสนุนให้เสนอได้ในลาดี Anoop จากมันเนี้ยย์เบอร์เชนชิลด์การสูญเสีย 50 เบอร์เชนชิลด์และสามารถทำให้เกิดการอ้อมและ好的

ผลจากการสอดคล้องกับผลตอบในตัวหนอนภายใน 7 ได้ 60 เบอร์เชนชิลด์โดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่อโรคที่ดีและสามารถทำให้เกิดการอ้อมและดีในตัวหนอนผลผลิตโดยยังคงประสิทธิภาพการก่า
Agricultural Science and Management J. 2 (2) : 25-34 (2019)

Bacillus thuringiensis

Spodoptera litura (Fabricius).

Metarhizium anisopliae

Metarhizium anisopliae

Oryctes rhinoceros

Metarhizium anisopliae

Metarhizium anisopliae

Metarhizium anisopliae

Metarhizium anisopliae

Metarhizium anisopliae

Metarhizium anisopliae
daughter conidia.

Powder formulation of Metarhizium anisopliae, its Stability and effects against Oryctes beetles tested in...

Southland Products. 2017. Sugarcane Borer Diets. 201 Stuart Island Road Lake Village, Arkansas 71653.
