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THE ANALOGY OF REAL OPTIONS TO FINANCIAL OPTIONS
Tho Dinh NGUYEN

ABSTRACT

The real options literature has demonstrated the analogy between decisions concerning
real investment opportunities and those concerning financial options. The role of the underlying
uncertainty, irreversibility, and time flexibility are very similar in both cases. For a decade immediately
after the appearance of the option pricing model, developed by Fischer Black, Robert Merton, and
Myron Scholes in 1973, its idea had fascinated a number of researchers and there has been a number
of studies using the option pricing technique to solve the valuation problems of various financial
instruments such as debentures, convertible bonds, warrants, stocks, and insurance contracts. In the
1980s, the applications of option pricing started to expand beyond the limit of financial instruments
to include some economic problems that have the option-like structure. Using the new methods
and techniques to find the solutions of the Black and Scholes’ partial differential equation, this
paper presents the analogy of the real options to the financial options.
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Introduction

Though the original formula of Black and Scholes was only developed for a simple traded
European call option, with simple modification, it was applicable to the valuation of various different
types of options. In the 1980s, the applications of option pricing started to expand beyond the limit
of financial instruments to include some economic problems that have the option-like structure.
Cukierman (1980) was the first to attempt to incorporate the opportunity cost of the waiting option
to invest into the valuation of investment projects using a Bayesian framework. Bernanke (1983)
introduced the option value of waiting through the "bad news principle". Brennan and Schwartz
(1985), McDonald and Siegel (1985), and McDonald and Siegel (1986) formalised the methods and
techniques, providing the basis for the research on real options.

The significant development in the area has solved a number of problems related to
corporate investment decisions, including, for example, irreversible investment (option to defer)
(Dixit, 1992; McDonald and Siegel, 1986); flexibility investment (option to expand, to contract, to shut
down and restart) (McDonald and Siegel, 1985; Pindyck, 1988); sequential or staged investment (time
to build option) (Majd and Pindyck, 1987; Trigeorgis, 1993); etc. In the first section, the classic financial
option pricing formula of Black, Merton, and Scholes will be re-established with different methods
and techniques to arrive at the final solutions. A real options valuation model of a simple investment
problem is reintroduced so that the analogy between financial options and real options can be

demonstrated.

The Black, Merton, and Scholes Model of Financial Options (1973)

Black initiated the fundamental partial differential equation of the option pricing model in
late 1969. Black together with Scholes and Merton complete the Black-Scholes formula for pricing a
European call option on an underlying non dividend paying stock whose price is log-normally
distributed (Black and Scholes, 1973). In a frictionless efficient market, a portfolio of a long position
in a call option to buy the stock and a proportional short position in the stock is made and adjusted
continuously to maintain the riskless position. By the law of one price or no-arbitrage, the portfolio
then must have the same payoffs as the riskless asset. Suppose the value of a stock, P, evolves
according to a geometric Brownian motion of the form:

dP; = pPdt + OPdz (at t=0, P,>0) (1)

where W is the growth rate parameter, G'is the instantaneous standard deviation of the stock value,
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dz is the increment of the standard Wiener process'. We call C(P,, t) the value of the call option to
buy the stock and use Ito's lemma to expand call C(P,, t), which is the increment of call ((P,, t) over
an infinitesimally small time interval at:

2
dC:EdPIJrl 6C2(dpl)2+§dt 2
oFp, 2 (6P) at
hence dc - Ed}’, 1 o2P? &°C oC 4 (3)
oP, 2 @PR,)? at

To offset the resulting unknown rise or fall of C(P,, t) as P; changes over each time increment

dt, we create a portfolio, I1, consisting of a call option to buy the stock and a short position of P,

with the amount that equals —ZT)QP,, and continuously adjust the short sale amount to maintain
t

the delta hedge® position. So that the total change in the value of our portfolio, dlT is:

ar-ac-2Car, - 2 an Lo'r? O ann - S a, @
oP, P, 2 ot 0P
hence di=dc-Cap -1 2P2acdt o g (5)
oP, ' 2 opP? ot

To avoid arbitrage possibility, the portfolio should only earn the normal interest, r. Thus,
over the time increment dt, the portfolio earns rIldt, and:

Aldt = rCdt — ra—cPdt—— 2P26—Cdt 20 » (6)
oP, 2 oP? at

Dividing all terms by dt and rearrange the equation, we arrive at the fundamental Black-
Scholes partial differential equation for option valuation:
9C 1 _apo 62C ac

rC=rP— +—-0°F @)
oP, 2 6P2 ot

Notice that there is no term in the Black-Scholes equation which states the exercise price
K of a call option, or its expiry date T. The Black-Scholes equation can apply to every economic
function of the random walk variable P

To arrive at an analytically tractable solution, some boundary conditions are needed. Since
the call option is the right to buy the underlying stock, its current value cannot be higher than the
current stock price. At maturity, the value of the call option must not be less than the difference
between the stock price and the exercise price. The longer time to maturity, the higher the value of
the call option. Black and Scholes applied the heat transfer formula in physics® to get the analytical
solution for the partial differential equation (7). We present an alternative approach to get the same
solution as follows.

Given:

! That means (t) follows a Markov process with independent increments dz = &, \/E where & ~M0,1), and K §&,)=0 for tis. F(dz)=0and Var(dz)=F(dz)’=dt.
? We call "delta hedge" because the amount of the stock that is sold short is proportional to Cs=dC/dt

® The stochastic movement of the stock price in financial markets can be compared with the stochastic movement of heat from a higher temperature place to
a lower one, i.e. the stochastic diffusion of prices of stock or other financial securities are very similar to the diffusion of heat. A formal proof of the final solution

is given in the Appendix.
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C(P) = max H(Pr- K) e, 0] (8)
Because P, follows a geometric Brownian diffusion process, using Ito's lemma we can obtain:
dlnP,:(r—%oj}lt+adz 9)

Thus, P, = pte("%";)"‘”*“' (with 7 > t) so that the marginal distribution for Py is given by
P, times the natural exponential of a normal variable x, N( (r - % o )T -1),6%(T-1) ). Without loss of

generality, we can set t=0 to ease the denotation, then:

x~M(r - 102 ,0°T) (10)
and (8) gives
CP)=g-rr j (Pe* - K) 1 ex (X rT +2 o T)2 (11)
In(%5) V276°T 20°T
_ ]‘ pe*'T 1 o% _(x—ﬂ'+%o‘2T)2dx
- t
In{55) V275°T 20°T (12)
) ] S N x4y o-2T)2
In(X}) \/;a'zT 26°T
o _ 1 2 = 1 2
-P, I 1 ex _(x T+ 0 T)2:4(x rT)zade
In{x;) \/27[0’2T 20°T (13)
7 1 ()c—rT+lo'2T)2
-Ke ™ exg x - ——2—7"ldx
ln.([«,;) VQII'dzT ‘{ 262T
w T —1g2
=Pz_[ 1 ex _(x r 220'T)2d x
,,,,,%,\/5 20°T oJT (14)
£ —-rT 1 .2
-Ke™™ I L ex _(x r +22G T)2 a-—=
Ity V2T 20°T oJT
= 1 2
If we let g, = (r+ d )T and d, = M and replacing d; and d into (14), we
T oJT
can write:
» 2
C(P)=P, —‘]d(dl)
(n(¥5)-rT -5 0 )/a'\r J_ (15)

K 1 d
- Ke ™™ _[ ,_ex;{— —2]d(d2)
(ln(‘?/p.)—ﬂ\;o'z)/ oJT 2z 2

By construction, we have a pair of standard cumulative normal distributions, d1~N(0,1) and
d~N(0,1). Thus the final analytical solution for the partial differential equation (7) can be easily
calculated.

ap, t) = PDd)) - ke D(dy) (16)

ln(ﬂ]+(r+ ! 02)(T—t)
d, = K 2 (17)
oJT -t
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ln(P‘j+[r— : 0'2)(T—t)
K & (18)
oNT -t

d, =

where @(+) is the cumulative normal density function, and T-t is the time-to maturity of the
option. Equation (16) can be written as C(P,t)=e""[(Pe""'D(d;}-KD(d,)]. Thus, D(d,) is the
probability that the option will be exercised in a risk neutral world, and KD(d>) is the expected
future expense at time T if the option is exercised. The expected future income of the option at
time T is Pe"""®(d)). The future income of the option depends on the value of the underlying asset
that equals Py if Py > 0 and is zero otherwise. The expected future income net of expected future
expense gives the expected option value at time T, which is then discounted to present value as in
(16). The option value, ceteris paribus, depends only on the current stock price, exercise price,

riskless interest rate, volatility, and time to maturity of the option.

The Basic Real Options Model of Investment

This section gives a formal treatment of the valuation of the option to defer investment.
The methods and techniques for deriving the final solutions to the valuation problem, introduced
by McDonald and Siegel (1986) and Dixit and Pindyck (1994) is very much the same as what we have
presented for the financial options. Suppose the value of a project, V, evolves according to a
stochastic diffusion process called the geometric Brownian motion of the form:

dv = (po\Vdt + ovdz (19)

Where p is the instantaneous actual expected return on the project, & denotes the
proportional cash flow pay-out (dividend) on the operating project, o is the instantaneous standard
deviation of the project value, and dz is the increment of the standard Wiener process. Our purpose
is to find out the optimal expected value, V', at which firms should decide to invest and maximise
its expected net payoff value of the investment opportunity, F(V), over the time horizon, T

The pricing of a real option to invest is very much the same as the pricing of a financial call
option to buy a dividend-paying stock. However, because the value of the project, V, is not traded
on financial markets, we assume that the stochastic changes in V must be spanned by an existing
traded asset or a portfolio of assets that is perfectly correlated with V.

As above, F(V) is the value of the option to invest and V is log-normally distributed. Then

we expand dF over a small time increment dt using Ito's lemma and equation (19):
dF = FydV + %Fw (dV) = F,dv + % oV 2y, dt (20)

Like the case of a call option to buy a stock, over each short time interval, dt, we create a
portfolio, I, consisting of a long position in the option to invest of F(V) and a short position in the
project (or an equivalent asset) with the value, that reflects delta hedge strategy, of F\V. Then the
value of the portfolio isTT= AV) - FV.

Unlike the analysis provided by Black and Scholes in their original paper for a financial

option to buy a non dividend paying stock, our real option to invest can be considered as a call
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option that pays dividends with the continuous rate, o As V follows a diffusion process of equation
(19), the continuous rate of value appreciation is, which can be considered as capital gains or retained
earnings from holding the project. The dividends and capital gains together are the expected returns
on the project, which are the expected continuous rate of profit (or total earnings) when the
investment is made. In our current portfolio, we are in short position of the project, hence over each
time increment, dt, we must pay out OFVdt as dividends or distributed earnings. Thus, over small
time increment dt, the change in value of our portfolio will be

dIT= dF - FydV - FVdt (21)

Substituting for dF above gives:
dll = F,dV + % o2V2F,, dt - F,dV - 6F, Vdt (22)
and dil = %aQVQFWdt—JFVth (23)

Over the time increment dt, to avoid arbitrage possibility, the portfolio should only earn
the normal interest rate, r, and the sum is rI1dt. Thus:
dIl = Mldt = (AV) - FAV)dt = rFdt - AVt (24)
Compare the immediately above two equations (23) and (24), rearrange the terms, and
divide the two sides by dt, we arrive at the final differential equation for the real option to invest:

% 02V 2F,, dt - 8F,Vdt = rFdt - rF, Vdt (25)
% 02V2F,, dt + rF,Vdt - 5F,Vdt - rFdt = 0 (26)

% 6*VFyy +(r - S)FyV —rFd =0 @7

This differential equation is very much the same as the fundamental Black-Scholes partial
differential equation, except for the fact that it does not include the first order derivative of F with
respect to t for the current equation is only differentiated with respect to a single variable, V, and it
includes a term related to the paid-out dividends to reflect the changes in the structure of the
option.

The Analogy of Real Options to Financial Options to Invest

Investment irreversibility, uncertainty, and timing flexibility give rise to the option-like
feature of investment opportunities. By definition, a financial option is a contract that gives the
holder the right but not the obligation to buy or sell a certain underlying asset at the price agreed
today (called exercise price or strike price) for delivery on a given date in the future (called exercise
date or expiry date). A call option offers the call holder the right to buy, while a put option gives
the put holder the right to sell. An American option permits the holder to exercise the option on or
before the expiry date, while a European option allows the holder to exercise his/her right only on
the date of expiry. For example, an American call holder of an IBM stock will be able to exercise
his/her right and buy that stock any time on or before the expiry date at today's agreed price.
Analogous to the financial option, an investment opportunity is an American call option with a
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perpetual expiry date. To put it differently, the investor has the right to pay the exercise price (which,
in this case, is the cost of investment and is irreversible) and receive an asset in return (which is the
realised value of the investment) at any time on or before the expiry date, which is perpetual.

As we have observed in our valuations of financial and real options, in a world where the
law of one price prevails, arbitrage will govern the price of the options regardless of their future
actual price. Therefore, options have a value that does not depend on the future actual price of the
underlying asset but, ceteris paribus, depends only on the current price of the underlying asset. In
addition, they are rights and not obligations to buy or sell the underlying asset, their holders can
always enjoy the favourable price movement whist limiting his/her loss when the price moves
adversely, and their value is influenced by the uncertainty and time to maturity.

Take the call option in our analysis as an example. At maturity, should price moves
favourably, the option will be exercised and give the holder payoff, that is the difference between
the actual realised price of the stock and the exercise price, P-K, which is called the intrinsic value
of the option. If the price of the stock moves adversely, the option is not exercised and the payoff
is zero. Before maturity, when the price of the underlying stock is at the lower range, there is a
possibility that the price will improve in the future and the holder can expect to enjoy the possible
payoff, which is the difference between the realised price of the underlying stock and the cost to
obtain the stock under the call option contract, the exercise price. He/she can limit the loss when
the stock price moves adversely.

C(P) | Call option value F(V) | Waiting option value
Intrinsic Vaiue P-K Intrinsic Value V - 1
N
P-K V-1
Call value C( F(Vy=aV%,
Time Valye Time Valye
Exercise Stock Investment :  Project
Price Price Expenditure; VlQr
X A, K
0 K PP 0 1 VoW
The Value of a Call Option to Buy Stock, C(P) The Value of Investment Opportunity, F(V)

Figure 1 The Analogy of Real Options to Financial Options

The higher the uncertainty of future stock prices and the longer time to maturity, the higher
the value of the option, C(P), as higher uncertainty and longer time to maturity will increase the
possibility of a higher realised price as well as the possibility of a lower realized price. But the holder
can enjoy the benefit of upside price improvement while limit the loss of the downside price
deterioration, hence he must pay something to enjoy this favourable condition which is the price
C (P) of the option. The difference between the value of the option at the lower range of stock price
and the intrinsic value is called the time value of the option. There is a cut-off point P’, at which the
time value of the option disappears, and the option value coincides with its intrinsic value, as P is
already too high, and waiting is no longer valuable.

Similar to what we have analysed above, in a real option, we have the opportunity to make
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an investment at a known cost, /, which is similar to the exercise price. And the investment would
provide us with underlying real assets, which are factories or equipment.

If the investment opportunity is a now or never opportunity, then it is like the option at
maturity; the firm has no choice but to make the investment decision should the expected present
value, V, of future possible cash flows be higher than the exercise price, which is the investment
cost, /, then the firm should invest immediately. Firms are not required to invest if the expected
present value of future profits is less than the exercise price and their "loss" is limited to zero.

However, in many cases, the investment opportunity does not disappear immediately and
firms can choose to invest either now or later. In those cases, firms will often choose to wait for new
information to arrive so that they can make the investment decision later when market conditions
improve to ensure the profitability of the project. At the same time, they can limit their loss by not
investing when the market conditions deteriorate. Hence, under uncertainty, waiting has a value
which is similar to the time value of the option and firms only invest when the expected return

covers both the intrinsic value of the investment project and its time value.

Conclusions

The real option to invest is in many ways similar to the financial call option. However, unlike
financial options where value is derived from other financial instruments, the option to invest can
be considered a real option as it gives the right to obtain a real asset. Once investment is carried
out, the option is gone, so the option value is an opportunity cost of investing. Managers must add
this opportunity cost into its full cost of investment, hence, the hurdle level increases. The higher
the uncertainty, the higher the hurdle level is. This is an important implication for real options
research on corporate investment decisions.

The real options approach to investment decisions under uncertainty gives us some
important insight into firms' investment behaviour. First, the lost option value as firms decide to
exercise their waiting option to invest is an opportunity cost that must be included as part of the
cost of investment. Thus, the traditional NPV rule must be modified to include this opportunity cost.
Second, this opportunity cost is sensitive to uncertainty or changing economic conditions over the
future value of the investment. Hence uncertainty has an important impact on investment spending
and sometimes this impact is even more important than interest rates. Third, firms would make (or
abandon) an investment only when the present value of expected return of the project reaches a
"hurdle" level, which is sufficiently higher (or lower) than the cost of capital. The hurdle level is an
increasing function of uncertainty.

This insight has implications for firm managers in preparing their capital budgeting and
carrying out a series of option-like managerial operations, as well as for policymakers in issuing

policies to induce investments.



NISANUMEATULREINYINTIANS
UM 5 RUUTN 1 1FRUNNIIAN - NQUIEY 2561

E 9

REFERENCES

Bernanke, Ben S. (1983). Irreversibility, Uncertainty and Cyclical investment. The Quarterly Journal
of Economics, Vol. 98, pp. 85-106.

Bertola, Giuseppe. (1998). Irreversible Investment. Research in Economics, Vol. 52, pp. 3-37.

Black, Fischer, and Scholes, Myron. (1973). The Pricing of Options and Corporate Liabilities. Journal
of Political Economy, Vol. 81, No. 3 (May/June), pp. 637-654.

Brennan, Michael J. and Eduardo S. Schwartz. (1985). Evaluating Natural Resource Investments.
Journal of Business, Vol. 58 (January), pp. 135-157.

Cukierman, Alex. (1980). The Effects of Uncertainty on Investment under Risk Neutrality with
Endogenous Information. Journal of Political Economy, Vol. 88, No. 3, pp. 462-475.

Dixit, Avinash K. (1992). Investment and Hysteresis. Review of Economic Studies, Vol. 6, No. 1
(Winter), pp. 107-132.

Dixit, Avinash K. and Pindyck, Robert S. (1994). Investment under Uncertainty. Princeton University
Press, Princeton, New Jersey.

Majd, Saman and Robert S. Pindyck. (1989). Learning Curve and Optimal Production under
Uncertainty. Rand Journal of Economics, Vol. 20 (Autumn), pp. 331-343.

McDonald, Robert, and Daniel Siegel. (1985). Investment and the Valuation of Firms When There
Is an Option to Shut Down. International Economic Review, Vol. 26, pp. 331-349.

McDonald, Robert, and Daniel Siegel. (1986). The Value of Waiting to Invest. The Quarterly Journal
of Economics, Vol. 101, pp. 707-727.

Pindyck, Robert S. (1988). Irreversible Investment, Capacity Choice, and the Value of the Firm.

The American Economic Review, Vol. 78, No. 5 (December), pp. 415-27.

Trigeorgis, Lenos. (1993). The Nature of Option Interactions and the Valuation of Investments
with Multiple Real Options. The Journal of Financial and Quantitative Analysis, Vol. 28,
No. 1 (March), pp. 1-20.





