Somatic cell count and biochemical components of milk: Relation to udder health and diagnosis of subclinical quarter infections in buffaloes

Main Article Content

Kanchan Arya Baljinder Kumar Bansal Dhiraj Kumar Gupta Sikh Tejinder Singh Swaran Singh


The present study was conducted in buffaloes to determine the occurrence of subclinical mastitis and its diagnosis in relation to milk SCC and biochemical composition. The results showed that taking quarter foremilk (QFM) somatic cell count (SCC) threshold limit of<200×103 cell for defining healthy quarters, 16.48% of buffaloes and 5.79% of quarters were positive for specific subclinical mastitis. In total, 57/363 (15.70%)of quarters were bacteriological positive with 21 (5.79%) representing specific and 36 (9.92%) latent infections. The major pathogen isolated were 28(49%)coagulase-negative staphylococci followed by 16(28%) S. aureus, 09 (16%) Streptococcus and 4(7%) Corynebacterium spp. The average QFM SCC was found as  52.50×103 cells /ml for the quarter with no bacteria, and 356.51×103 cell /ml for the quarters infected with one or the other bacteria (p<0.05). The milk electrical conductivity (EC), Fat and Lactoseshowed significant alterations with the quarter infection; the EC and Fat increased while Lactose decreased in infected quarters (p < 0.05). The California mastitis test CMT) at cut off score of > 0.5 for diseased quarters showed 68.75% sensitivity with 99.09% specificity. The EC with 87.50% sensitivity and 74.02% specificity and Lactose with  84.37% sensitivity and 66.16% specificity also showed significant (p<0.01) discrimination ability to differentiate healthy and mastitis quarters in buffaloes. The milk pH was not found to be a good parameter to identify diseased quarters.



Article Details

How to Cite
ARYA, Kanchan et al. Somatic cell count and biochemical components of milk: Relation to udder health and diagnosis of subclinical quarter infections in buffaloes. Buffalo Bulletin, [S.l.], v. 40, n. 3, p. 419-430, sep. 2021. ISSN 2539-5696. Available at: <>. Date accessed: 21 oct. 2021.
Original Article


Abdel-Rady, A. and M. Sayed. 2009. Epidemiological studies on subclinical mastitis in dairy cows in Assiut Governorate, Vet. World, 2(10): 373-380. Available on:

Auldist, M.J., S. Coats, B.J. Sutherland, J.J. Mayes, G.H. McDowell and G.L. Rogers. 1996. Effects of somatic cell count and stage of lactation on raw milk composition and the yield and quality of Cheddar cheese. J. Dairy. Res., 63(2): 269-280. DOI: 10.1017/s0022029900031769.

Bannerman, D.D., M.J. Paape, J.W. Lee, X. Zhao, J.C. Hope and P. Rainard. 2004. Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin. Diagn. Lab. Immun., 11(3): 463-472. DOI: 10.1128/CDLI.11.3.463-472.2004

Bansal, B.K. and D.K. Gupta. 2009. Economic analysis of bovine mastitis in India and Punjab. Indian J. Dairy Sci., 62(5): 337-345.

Bansal, B.K., D.K. Gupta, T.A. Shafi and S. Sharma. 2015. Comparative antibiogram of coagulase-negative staphylococci (CNS) associated with subclinical and clinical mastitis in dairy cows. Vet. World, 8(3): 421-426. DOI: 10.14202/vetworld.2015.421-426

Bansal, B.K., J. Hamamm, O. Lind, S.T. Singh and P.S. Dhaliwal. 2007. Somatic cell count and biochemical components of milk related to udder health in buffaloes. Italian J. Anim. Sci., 6(2): 1035-1038. DOI: 10.4081/ijas.2007.s2.1035

Bansal, B.K., J. Hamann, N.T. Grabowski and K.B. Singh. 2005. Variation in the composition of selected milk fraction samples from healthy and mastitic quarters, and its significance for mastitis diagnosis. J. Dairy. Res., 72(2): 144-152. DOI: 10.1017/s0022029905000798

Bansal, B.K., K.B. Singh, R. Rohan, D.V. Joshi, D.C. Nauriyal and M. Rajesh. 1995. Incidence of sub-clinical mastitis in some cow and buffalo herds in Punjab. Journal of research: Punjab Agricultural University, 32: 79-81.

Berglund, I., G. Pettersson, K. Ostensson and K. Svennersten-Sjaunja. 2007. Quarter milking for improved detection of increased SCC. Reprod. Domest. Anim., 42: 427-432. DOI: 10.1111/j.1439-0531.2006.00803.x

Bhutia, P.S., B.K. Bansal, D.K. Gupta, R.S. Singh and S.K. Uppal. 2019. Bacterial isolation of milk samples submitted from clinical mastitis buffaloes during 2007 to 2016. Trop. Anim. Health Pro., 51(6): 1551-1557. DOI: 10.1007/s11250-019-01846-w

Bytyqi, H., U. Zaugg, K. Sherifi, A. Hamidi, M. Gjonbalaj, S. Muji and H. Mehmeti. 2010. Influence of management and physiological factors on somatic cell count in raw cow milk in Kosova. Vet. Arhiv., 80(2): 173-183. Available on:

Chavoshi, M. and J. Husaini. 2012. Buffalo subclinical mastitis bacterial pathogens in Iran. In The 2nd International Conference on Biomedical Engineering and Technology, IACSIT Press, Singapore. 34(2012): 143-146. Available on:

Dhakal, I.P. 2006. Normal somatic cell count and subclinical mastitis in Murrah buffaloes. J. Vet. Med. B., 53(2): 81-86. DOI: 10.1111/j.1439-0450.2006.00918.x

Fahmid, S., E. Hassan, H. Naeem, S. Barrech, S. Lodhiand and S. Latif .2016. Determination of mastitis by measuring milk electrical conductivity. International Journal of Advanced Research in Biological Sciences, 3(10): 1-4. DOI: 10.22192/ijarbs

Fosgate, G.T., I.M. Petzer and J. Karzis. 2013. Sensitivity and specificity of a hand-held milk electrical conductivity meter compared to the California mastitis test for mastitis in dairy cattle. Vet. J., 196(1): 98-102. DOI: 10.1016/j.tvjl.2012.07.026

Hamann, J. 2002. Relationships between Somatic cell counts and milk composition. Bulletin of the International Dairy Federation, 372: 56-59.

Hogan, J., R. Gonzales, R. Harmon, S. Oliver, S. Nickerson, J. Pankey and K. Smith. 1999. Laboratory Handbook on Bovine Mastitis. National Mastitis Council, Madison, Wisconsin, USA.

Holdaway, R.J., C.W. Holmes and I.J. Steffert. 1996. A comparison of indirect methods for diagnosis of subclinical intramammary infection in lactating dairy cows. Aust. J. Dairy Technol., 51(2): 64-82.

Joshi, S. and S. Gokhale. 2006. Status of mastitis as an emerging disease in improved and periurban dairy farms in India. Ann. N.Y. Acad. Sci., 1081: 74-83. DOI: 10.1196/annals.1373.007

Kandeel, S.A., A.A. Megahed, M.H. Ebeid and P.D. Constable. 2019. Ability of milk pH to predict subclinical mastitis and intramammary infection in quarters from lactating dairy cattle. J. Dairy. Sci., 102(2): 1417-1427. DOI: 10.3168/jds.2018-14993

Kaur, G., B.K. Bansal, R.S. Singh, N. Kashyap and S. Sharma. 2018. Associations of teat morphometric parameters and subclinical mastitis in riverine buffaloes. J. Dairy Res., 85(3): 303-308. DOI: 10.1017/S0022029918000444

Kumar, M., M.L.V. Rao and P.C. Shukla. 2012. Incidence of latent mastitis in buffaloes of Jabalpur region of Madhya Pradesh. International Journal of Livestock Research, 2: 138-139. DOI: 10.5455/ijlr.20120930051522

Medrano-Galarza, C., J. Gibbons, S. Wagner, A.M. de Passille and J. Rushen. 2012. Behavioral changes in dairy cows with mastitis. J. Dairy. Sci., 95: 6994-7002. DOI: 10.3168/jds.2011-5247

Mitchell, G.E., S.A. Rogers, D.B. Houlihan, V.C. Tucker and B.J. Kitchen. 1986. The relationship between somatic cell count, composition and manufacturing properties of bulk milk. I. Composition of farm bulk milk. Aust. J. Dairy. Technol., 41(1): 9-12.

Mitra, M., D. Ghosh, K. Ali, C. Guha and A.K. Pramanik. 1995. Prevalence of subclinical mastitis in an organised buffalo farm at Haringhata. Indian. Vet. J., 72(12): 1310-1311.

Mustafa, Y.S., N.A. Farhat and Z. Tooba. 2013. Prevalence and antibacterial susceptibility in mastitis in buffalo and cow in district Lahore-Pakistan. Buffalo. Bull., 32(4): 307-314. Available on:

Oliveira, A.A.F. 2004. Evaluation of aspiration and expression cytology in the diagnosis of buffalo mastitis and the search for toxigenic and beta-lactamase-producing strains of Staphylococcus aureus and Escherichia coli. Thesis, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Botucatu, Brazil.

Pankaj, A.S., R. Chhabra and N. Sindhu. 2013. Sub-clinical mastitis in Murrah buffaloes with special reference to prevalence, etiology and antibiogram. Buffalo. Bull., 32(2): 107-115. Available on:

Patbandha, T.K., K. Ravikala, B.R. Maharana, R. Pathak, S. Marandi, P.U. Gajbhiye and R. Malhotra. 2016. Receiver operating characteristic analysis of milk lactose for identification of mastitis in buffaloes. Indian J. Anim. Res., 50(6): 969-973. DOI: 10.18805/ijar.11176

Paura, L.D. Kairisha and D. Jonkus. 2002. Repeatability of milk productivity traits. Vet. Zootec., 19(41): 90-93. Available on:

Pyörälä, S. 2003. Indicators of inflammation in the diagnosis of mastitis. Vet. Res., 34(5): 565-578. DOI: 10.1051/vetres:2003026

Rawdat, A.M and N.M. Omaima. 2000. Some biochemical changes in serum and milk of mastitic buffaloes. Egyptian Journal of Agricultural Research, 78(4): 1737-1747.

Reddy, B.S.S., K.N. Kumari, Y.R. Reddy, M.V. B. Reddy and B.S. Reddy. 2014. Comparison of different diagnostic tests in subclinical mastitis in dairy cattle. International Journal of Veterinary Science, 3(4): 224-228.

Riollet, C., P. Rainard and B. Poutrel. 2000. Differential induction of complement fragment C5a and inflammatory cytokines during intramammary infections with Escherichia coli and Staphylococcus aureus. Clin. Diagn. Lab. Immunol.,7(2): 161-167. DOI: 10.1128/cdli.7.2.161-167.2000

Rogers, S.A., G.E. Mitchell and J.P. Bartley. 1989. The relationship between somatic cell count, composition and manufacturing properties of bulk milk 4 - non-protein constituents. Aust. J. Dairy Technol., 44(2): 53-56.

Ruegg., P.L., R.J. Erskine and D.E. Morin. 2015. Large Animal Internal Medicine, 5th ed. Elsevier Mosby, 3251 Riverport Lane St.Louis, Missouri, USA. p. 1023-1025.

Sawa, A. and D. Piwczynski. 2002. Somatic cell count and milk yield and composition in Black and White x Holstein- Friesian cows. Med. Weter., 58(8): 636-640.

Schultz, L.H. 1977. Somatic cell in milk-physiological aspects and relationship to amount and composition of milk. J. Food Proctect., 40(2): 125-131. DOI: 10.4315/0362-028X-40.2.125

Sharma, N. 2007. Alternative approach to control intramammary infection in dairy cows- A review. Asian J. Anim. Vet. Adv., 2(2): 50-62. DOI: 10.3923/ajava.2007.50.62

Sharma, N., T.Y. Kang, S.J., Less, J.N. Kim, C.H. Hur, J.C. Ha, V. Vohra and D.K. Jeong. 2013. Status of bovine mastitis and associated risk factors in subtropical Jeju Island, South Korea. Trop. Anim. Health Pro., 45(8): 1829-1832. DOI: 10.1007/s11250-013-0422-3

Singh, A., B.K. Bansal, R.S. Singh, D.K. Gupta, S. Singh and S. Sharma. 2018. Prevalence and diagnosis of subclinical mastitis in sahiwal dairy cows. International Journal of Livestock Research, 8(6): 337-345. DOI: 10.5455/ijlr.20170621112044

Supriya, V.S. and D. Lather. 2010. Prevalence of sub-clinical mastitis in an organized cow herd. Haryana Veterinarian, 49: 64-65. Available on:

Thakur, S., M. Singh, G.K. Aseri, A. Verma and S.S. Khan. 2018. Isolation and characterization of mastitis pathogens and milk composition changes in Murrah buffaloes (Bubalus bubalis) during winter season. Indian J. Anim. Res., 52(2): 276-280. DOI: 10.18805/ijar.11320

Tiwari S., T.K. Mohanty, T.K. Patbandha, A. Kumaresan, M. Bhakat, N. Kumar and R.K. Baithalu. 2018. Critical thresholds of milk SCC, EC and pH for detection of sub-clinical mastitis in crossbred cows reared under subtropical agroclimatic condition. International Journal of Livestock Research, 8(6): 152-159. DOI: 10.5455/ijlr.20170620120712

Uallah, S., T. Ahmad, M.Q. Bilal, Z.U. Rahman, G. Muhammad and S.U. Rahman. 2005. The effect of severity of mastitis on protein and fat contents of buffalo milk. Pak. Vet. J., 25(1): 148-152. Available on:

Uppal, S.K., K.B. Singh, K.S. Roy, D.S. Nauriyal and B.K. Bansal. 1994. Natural defense mechanism against mastitis: A comparative histo-morphology of buffalo and cow teat canal. Buffalo J., 2: 125-131

Yang, W., H. Zerbe, W. Petzl, R.M. Brunner, J. Günther, C. Draing, S.V. von Aulock, H.J. Schuberth and H.M. Seyfert. 2008. Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNF-alfa and interleukin-8 (CXCL8) expression in the udder. Mol. Immunol., 45(5): 1385-1397. DOI: 10.1016/j.molimm.2007.09.004