Fatty acid profile of Murrah buffalo milk fat

Main Article Content

Badri Prasad Kushwaha Deepak Upadhyay Sultan Singh Subendu Bikas Maity Krishna Kunwar Singh Asim Kumar Misra


Milk fatty acid composition of Murrah buffaloes was determined in present study. Samples were collected from 10 lactating buffaloes and were analysed for fatty acid profile using AOCS official method. Murrah milk fat was having 71.6% saturated fatty acids (SFA), 27.97% unsaturated fatty acids. C16:0, C18:1c, C18:0, C14:0 and C12:0 were the five most abundant fatty acid (82.5% of total fatty acids) in the Murrah milk. Palmitic acid, myristic acid (14:0) and stearic acid (18:0) together constituted approximately 85.8% of saturated fatty acids by weight. Short chain fatty acids (C4:0, C6:0), medium chain fatty acids (C8:0, C10:0, C12:0), and long chain fatty acids (C16:0, C18:0, C16:1, C18:2) were 1.82, 4.56 and 49.96 g/100 g respectively. Mono-unsaturated fatty acid were 26.79% of the fatty acids in milk, mostly oleic acid (18:1). Poly-unsaturated fatty acids constitute about 1.18% by weight of the total fatty acids. Linoleic acid (18:2) and α-linolenic acid (18:3) accounted for 0.88 and 0.30% by weight of the total fatty acids.


Download data is not yet available.

Article Details

How to Cite
KUSHWAHA, Badri Prasad et al. Fatty acid profile of Murrah buffalo milk fat. Buffalo Bulletin, [S.l.], v. 41, n. 1, p. 73-79, mar. 2022. ISSN 2539-5696. Available at: <https://kuojs.lib.ku.ac.th/index.php/BufBu/article/view/3319>. Date accessed: 28 may 2022.
Original Article


Biassus, L.D.O., J.A. Cobuci, C.N. Costa, P.R.N. Rorato, J.B. Neto and L.L. Cardoso. 2011. Genetic parameters for production traits in primiparous Holstein cows estimated by random regression models. R. Bras. Zootec., 40(1): 85-94. Available on: https://www.scielo.br/j/rbz/a/tLJqMNpnjvCNVMnSj7RNdcM/?lang=en&format=pdf

Bignardi, A.B., L. El Faro, V.L. Cardoso, P.F. Machado and L.G. Albuquerque. 2009. Random regression models to estimate test-day milk yield genetic parameters Holstein cows in Southeastern Brazil. Livestock Science, 123(1): 1-7. DOI: 10.1016/j.livsci.2008.09.021

Cobuci, J.A., R.F. Euclydes, P.S. Lopes, P.S. Costa, C. Napolis, R.A. Torres and C.S. Pereira. 2005. Estimation of genetic parameters for test-day milk yield in Holstein cows using a random regression model. Genet. Mol. Biol., 28(1): 75-83. DOI: 10.1590/S1415-47572005000100013

El Faro, L., V.L. Cardoso and L.G.D. Albuquerque. 2008. Variance component estimates applying random regression models for test-day milk yield in Caracu heifers (Bos taurus Artiodactyla, Bovidae). Genet. Mol. Biol., 31(3): 665-673. DOI: 10.1590/S1415-47572008000400011

Farhond, P. 2002. General Animal Welfare. Azad University of Western Azerbaijan, Azerbaijan.

Hurtado-Lugo, N., M. Cerón-Muñoz and A. Gutiérrez-Valencia. 2006. Estimación de parámetros genéticos para la producción de leche en el día Del control en búfalos de la Costa Atlántica Colombiana. Livestock Research for Rural Development, 18(3): 1-6.

Jamrozik, J., L.R. Schaeffer and J.C.M. Dekkers. 1997. Genetic evaluation of dairy cattle using test day yields and random regression model. Journal Genetics and Breeding, 80(6): 1217-1226. DOI: 10.3168/jds.S0022-0302(97)76050-8

Kettunen, A., E.A. Mäntysaari and J. Pösö. 2000. Estimation of Genetic parameters for daily milk of primiparous Ayrshire cows by random regression test-day models. Livest. Prod. Sci., 66: 215-261.

Kordnejad, A. 1999. Livestock Breeding (Genetic Value Forecasting Methods). Translation by Nasser Imam Jumaee Kashan, 1st ed., Tehran University Press, Tehran, Iran. 309p.

Mäntysaari, E.A. and M. Lidauer. 1999. Multiple trait reduced rank random regression test-day model for production traits. Interbull Bulletin, 22: 74-74

Moradi Shahrbabak, M. 2001. Persistency in dairy cattle, Iranian Holstein. Iranian Journal of Agriculture Science, 32(1): 193-202.

Olori, V.E., S. Brotherstone, W.G. Hill and B.J. McGuirk. 1999. Fit of standard models of the lactation curve to weekly records of milk production of cows in a single herd. Livest. Prod. Sci., 58(1): 55-63. DOI: 10.1016/S0301-6226(98)00194-8

Rashedi, A., J. Fayazi, M.T. Nasiri and M. Vatankhah. 2016. Genetic and phenotypic analyses of body weight traits for Lori-Bakhtiari lambs at different ages. Research on Animal Production, 7(14): 157-164. DOI: 10.29252/rap.7.14.164

Rekaya, R., M.J. Carabano and M.A. Toro. 1999. Use of test day yields for the genetic evaluation of production traits in Holstein-Friesian cattle. Livestock Production Science, 57(3): 203-217. DOI: 10.1016/S0301-6226(98)00181-X

Sawalha, R.M., J.F. Keown, S.D. Kachman and L.D. Vleck VAN. 2005. Genetic evaluation of dairy cattle with test-day models with autoregressive covariance structures and with a 305-d model. J. Dairy Sci., 88(9): 3346-3353. DOI: 10.3168/jds.S0022-0302(05)73018-6

Schaeffer, L.R., J. Jamrozik, G.J. Kistemaker and B.J. Van Doormaal. 2000. Experience with a test-day model. J. Dairy Sci., 83(5): 1135-1144. DOI: 10.3168/jds.s0022-0302(00)74979-4

Silvestre. A.M., F. Petin-Batista and J. Colaço. 2005. Genetic parameter estimates of Portuguese dairy cows for milk. Fat and protein using a spline test-day model. J. Dairy Sci., 88(3): 1225-1230. DOI: 10.3168/jds.S0022-0302(05)72789-2

Swalve, H.H. 1998. Use of test day records for genetic evaluation. In Proceedings of the 6th World Congress on Genetic Applied to Livestock Production, Armidale, Australia. 23: 295-301.

Swalve, H.H. 2000. Theoretical basis and computational methods for different test-day genetic evaluation methods. J. Dairy Sci., 83(5): 1115-1124. DOI: 10.3168/jds.S0022-0302(00)74977-0

Veerkamp, R.F. and R. Thompson. 1999. A covariance function for feed intake, live weight, and milk yield estimated using a random regression model. J. Dairy Sci., 82(7): 1565-1573. DOI: 10.3168/jds.S0022-0302(99)75384-1

Zullo, A., C.M.A. Barone, L. Zicarelli and D. Matassino. 2007. An application of the integrative method for extending part lactation milk record in Mediterranean Italian buffalo reared in Caserta province Ital. J. Anim. Sci., 6(Suppl. 2): 417-420. DOI: 10.4081/ijas.2007.s2.417

Most read articles by the same author(s)