Assaying the concentration of immunoglobulin G in colostrum from females postpartum and serum from neonatal calves of buffaloes (Bubalus bubalis)

Authors

  • Swati Agrawal Division of Animal Genetics, Indian Council of Agricultural Research, Indian Veterinary Research Institute, Uttar Pradesh, India
  • Tarun Kumar Division of Pharmacology and Toxicology, Indian Council of Agricultural Research, Indian Veterinary Research Institute, Uttar Pradesh, India
  • Rajni Chaudhary Indian Council of Agricultural Research, North Temperate Research Station, Himachal Pradesh, India
  • Anitta Pulikan Lionel Division of Animal Genetics, Indian Council of Agricultural Research, Indian Veterinary Research Institute, Uttar Pradesh, India
  • Subodh Kumar Division of Animal Genetics, Indian Council of Agricultural Research, Indian Veterinary Research Institute, Uttar Pradesh, India

DOI:

https://doi.org/10.56825/bufbu.2022.4134858

Keywords:

Bubalus bubalis, buffaloes, colostrum, failure of passive transfer, immunoglobulin G, serum

Abstract

Neonatal ruminants are born without any humoral immunity due to lack of placental transfer of immunoglobulins during gestation. This predisposes the newborn buffalo calves to a high incidence of morbidity and mortality on exposure to infectious agents. Colostrum is the first milk produced by the females after calving and is a rich source of immunoglobulins, especially immunoglobulin G (IgG). The immunocompetence of the neonates can be boosted by feeding them sufficient amount of good quality colostrum within a few hours after birth. Optimal colostrum management at a farm not only reduces the occurrence of diseases among the younger stock but also enhances their growth performance and productivity once they are adults. In the present study, eighty animals at a Murrah buffalo farm were screened for the concentration of IgG in the colostrum collected from recently parturated females and in the serum collected from their calves within 6 to 12 h of colostrum consumption to determine the status of transfer of passive immunity. Indirect ELISA was used to estimate the IgG levels. The overall mean (range) of colostral and serum IgG concentration was found to be 50.44±3.36 (12.71 to 227.78) and 10.85±0.62 (0.25 to 19.88) mg/ml, respectively for all the 80 animals. Routine screening of buffaloes, in a similar way, will help to reduce calf deaths due to immunodeficiency.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Swati Agrawal, Division of Animal Genetics, Indian Council of Agricultural Research, Indian Veterinary Research Institute, Uttar Pradesh, India


subkum@gmail.com, subodh.kumar1@icar.gov.in

Tarun Kumar, Division of Pharmacology and Toxicology, Indian Council of Agricultural Research, Indian Veterinary Research Institute, Uttar Pradesh, India

Tarun Kumar

Rajni Chaudhary, Indian Council of Agricultural Research, North Temperate Research Station, Himachal Pradesh, India

Rajni Chaudhary

Anitta Pulikan Lionel, Division of Animal Genetics, Indian Council of Agricultural Research, Indian Veterinary Research Institute, Uttar Pradesh, India



Subodh Kumar, Division of Animal Genetics, Indian Council of Agricultural Research, Indian Veterinary Research Institute, Uttar Pradesh, India

Subodh Kumar*


References

Abuelo, A., F. Cullens, A. Hanes and J.L. Brester. 2021. Impact of 2 versus 1 colostrum meals on failure of transfer of passive immunity, pre-weaning morbidity and mortality, and performance of dairy calves in a large dairy herd. Animals, 11(3): 782. DOI: 10.3390/ani11030782

Afzal, M., M.H. Javed and A.D. Anjum. 1983. Calf mortality: seasonal pattern, age distribution and causes of mortality [buffaloes, dairy cattle]. Pak. Vet J., 3(1): 30-33.

Ahmann, J., J. Steinhoff-Wagner and W. Büscher. 2021. Determining immunoglobulin content of bovine colostrum and factors affecting the outcome: A review. Animals, 11(12): 3587. DOI: 10.3390/ani11123587

Barmaiya, S., A. Dixit, A. Mishra, A.K. Jain, A. Gupta, A. Paul, M.A. Quadri, A.K. Madan and I.J. Sharma. 2009. Quantitation of serum immunoglobulins of neonatal buffalo calves and cow calves through ELISA and PAGE: Status of immune competence. Buffalo Bull., 28(2): 85-94.

Beam, A.L., J.E. Lombard, C.A. Kopral, L.P. Garber, A.L. Winter, J.A. Hicks and J.L. Schlater. 2009. Prevalence of failure of passive transfer of immunity in newborn heifer calves and associated management practices on US dairy operations. J. Dairy Sci., 92(8): 3973-3980. DOI: 10.3168/jds.2009-2225

Besser, T.E., C.C. Gay and L. Pritchett. 1991. Comparison of three methods of feeding colostrum to dairy calves. J. Am. Vet. Med. Assoc., 198(3): 419-422.

Blom, J.Y. 1982. The relationship between serum immunoglobulin values and incidence of respiratory diseases and enteritis in calves. Nord. Vet. Med., 34(7-9): 276-284.

Borghesi, J., L.C. Mario, M.N. Rodrigues, P.O. Favaron and M.A. Miglino. 2014. Immunoglobulin transport during gestation in domestic animals and humans - A review. Open Journal of Animal Sciences, 4(5): 323. DOI: 10.4236/ojas.2014.45041

Chaudhary, R., S. Kumar, H.M. Yathish, C. Mishra, A. Chauhan and N.R. Sahoo. 2016. Estimation of immunoglobulin G levels in colostrum of Murrah buffaloes. International Journal of Science, Environment and Technology, 5(4): 2003-2007. Available on: https://www.ijset.net/journal/1111.pdf

Chaudhary, R., S. Kumar, H.M. Yathish, A. Sivakumar, C. Mishra, A. Kumar, A. Chauhan, B. Sivamani and N.R. Sahoo. 2016. Identification of SNPs in Beta 2 Microglobulin (β2M) gene and their association with IgG concentration in neonatal buffalo calves. J. Pure Appl. Microbio., 10(2): 1387-1394.

Chigerwe, M. and J.V. Hagey. 2014. Refractometer assessment of colostral and serum IgG and milk total solids concentrations in dairy cattle. BMC Vet. Res., 10(1): 1-6. DOI: 10.1186/s12917-014-0178-7

Conneely, M., D.P. Berry, R. Sayers, J.P. Murphy, I. Lorenz, M.L. Doherty and E. Kennedy. 2013. Factors associated with the concentration of immunoglobulin G in the colostrum of dairy cows. Animal, 7(11): 1824-1832. DOI: 10.1017/S1751731113001444

Dang, A.K., S. Kapila, M. Purohit and C. Singh. 2009. Changes in colostrum of Murrah buffaloes after calving. Trop. Anim. Health Prod., 41(7): 1213-1217. DOI: 10.1007/s11250-008-9302-7

Deelen, S.M., T.L. Ollivett, D.M. Haines and K.E. Leslie. 2014. Evaluation of a Brix refractometer to estimate serum immunoglobulin G concentration in neonatal dairy calves. J. Dairy Sci., 97(6): 3838-3844. DOI: 10.3168/jds.2014-7939

de Souza, R.S., L.B.C. Dos Santos, I.O. Melo, D.M. Cerqueira, J.V. Dumas, F.D.O.P. Leme, T.F. Moreira, R.M. Meneses, A.U. de Carvalho and E.J. Facury-Filho. 2021. Current diagnostic methods for assessing transfer of passive immunity in calves and possible improvements: A literature review. Animals, 11(10): 2963. DOI: 10.3390/ani11102963

Duhamel, G.E. and B.I. Osburn. 1984. Neonatal immunity in cattle. The Bovine Practitioner, 19: 71-78. DOI: 10.21423/bovine-vol1984no19p71-78

Dunn, A., C. Duffy, A. Gordon, S. Morrison, A. Argűello, M. Welsh and B. Earley. 2018. Comparison of single radial immunodiffusion and ELISA for the quantification of immunoglobulin G in bovine colostrum, milk, and calf sera. J. Appl. Anim. Res., 46(1): 758-765. DOI: 10.1080/09712119.2017.1394860

El-Fattah, A., M. Alaa, F.H. Abd Rabo, S.M. EL-Dieb and H.A. El-Kashef. 2012. Changes in composition of colostrum of Egyptian buffaloes and Holstein cows. BMC Vet. Res., 8(1): 1-7. DOI: 10.1186/1746-6148-8-19

Elsohaby, I., M. Cameron, A. Elmoslemany, J. McClure and G. Keefe. 2019. Effect of passive transfer of immunity on growth performance of preweaned dairy calves. Can. J. Vet. Res., 83(2): 90-96.

Elsohaby, I., J.T. McClure, L.A. Waite, M. Cameron, L.C. Heider and G.P. Keefe. 2019. Using serum and plasma samples to assess failure of transfer of passive immunity in dairy calves. J. Dairy Sci., 102(1): 567-577. DOI: 10.3168/jds.2018-15070

Faber, S.N., N.E. Faber, T.C. McCauley and R.L. Ax. 2005. Case study: Effects of colostrum ingestion on lactational performance 1. Professional Animal Scientist, 21(5): 420-425. DOI: 10.15232/S1080-7446(15)31240-7

Filteau, V., É. Bouchard, G. Fecteau, L. Dutil and D. DuTremblay. 2003. Health status and risk factors associated with failure of passive transfer of immunity in newborn beef calves in Quebec. Can. Vet. J., 44(11): 907-913.

Franklin, S.T., D.M. Amaral-Phillips, J.A. Jackson and A.A. Campbell. 2003. Health and performance of Holstein calves that suckled or were hand-fed colostrum and were fed one of three physical forms of starter. J. Dairy Sci., 86(6): 2145-2153. DOI: 10.3168/jds.S0022-0302(03)73804-1

Gelsinger, S.L., A.M. Smith, C.M. Jones and A.J. Heinrichs. 2015. Comparison of radial immunodiffusion and ELISA for quantification of bovine immunoglobulin G in colostrum and plasma. J. Dairy Sci., 98(6): 4084-4089. DOI: 10.3168/jds.2014-8491

Giammarco, M., M. Chincarini, I. Fusaro, A.C. Manetta, A. Contri, A. Gloria, L. Lanzoni, L.M.E. Mammi, N. Ferri and G. Vignola. 2021. Evaluation of brix refractometry to estimate immunoglobulin g content in buffalo colostrum and neonatal calf serum. Animals, 11(9): 2616. DOI: 10.3390/ani11092616

Godden, S. 2008. Colostrum management for dairy calves. Vet. Clin. N. Am. Food A., 24(1): 19-39. DOI: 10.1016/j.cvfa.2007.10.005

Godden, S.M., D.M. Haines, K. Konkol and J. Peterson. 2009. Improving passive transfer of immunoglobulins in calves. II: Interaction between feeding method and volume of colostrum fed. J. Dairy Sci., 92(4): 1758-1764. DOI: 10.3168/jds.2008-1847

Godden, S.M., J.E. Lombard and A.R. Woolums. 2019. Colostrum management for dairy calves. Vet. Clin. N. Am. Food A., 35(3): 535-556. DOI: 10.1016/j.cvfa.2019.07.005

Gomes, V., K.M. Madureira, S. Soriano, A.M.M.P.D. Libera, M.G. Blagitz and F.J. Benesi. 2011. Factors affecting immunoglobulin concentration in colostrum of healthy Holstein cows immediately after delivery. Pesqui. Vet. Brasil., 31(suppl. 1): 53-56. DOI: 10.1590/S0100-736X2011001300009

Jain, A.K., I.J. Sharma, A. Dixit, R.G. Agrawal and Y.P.S. Malik. 2008. An investigation into comparative mortality rates of neonatal buffalo calves versus cow calves. Buffalo Bull., 27(3): 215-219.

Jain, A.K., I.J. Sharma, R.K. Tripathi, M.A. Quadri, R.G. Agrawal and A. Mishra. 2007. Comparative features of buffalo’s and cow’s colostrum vis-a-vis their sera samples. Indian J. Dairy Sci., 60: 199-201.

Jaster, E.H. 2005. Evaluation of quality, quantity, and timing of colostrum feeding on immunoglobulin G1 absorption in Jersey calves. J. Dairy Sci., 88(1): 296-302. DOI: 10.3168/jds.S0022-0302(05)72687-4

Johnsen, J.F., M. Chincarini, A.M. Sogstad, L. Solverod, M. Vatne, C.M. Mejdell and L. Hanninen. 2019. Salivary IgG levels in neonatal calves and its association to serum IgG: An observational pilot study. Translational Animal Science, 3(1): 589-593. DOI: 10.1093/tas/txz001

Kehoe, S.I., B.M Jayarao and A.J. Heinrichs. 2007. A survey of bovine colostrum composition and colostrum management practices on Pennsylvania dairy farms. J. Dairy Sci., 90(9): 4108-4116. DOI: 10.3168/jds.2007-0040

Korhonen, H., P. Marnila and H.S. Gill. 2000. Milk immunoglobulins and complement factors. Br. J. Nutr., 84(Suppl. 1): S75-S80. DOI: 10.1017/s0007114500002282

Kwatra, I., S.T. Singh, S. Sharma, K. Gupta and S.S. Randhawa. 2019. Effect of passive transfer of immunity on growth and health of buffalo calves. International Journal of Livestock Research, 9(10): 107-112. DOI: 10.5455/ijlr.20190810061155

Laegreid, W.W., M.P. Heaton, J.E. Keen, W.M. Grosse, C.G. Chitko-McKown, T.P. Smith, J.W. Keele, G.L. Bennett and T.E. Besser. 2002. Association of bovine neonatal Fc receptor a-chain gene (FCGRT) haplotypes with serum IgG concentration in newborn calves. Mamm. Genome., 13(12): 704-710. DOI: 10.1007/s00335-002-2219-y

Larson, B.L., H.L. Heary Jr and J.E. Devery. 1980. Immunoglobulin production and transport by the mammary gland. J. Dairy Sci., 63(4): 665-671. DOI: 10.3168/jds.S0022-0302(80)82988-2

Lee, S.H., J. Jaekal, C.S. Bae, B.H. Chung, S.C. Yun, M.J. Gwak, G.J. Noh and D.H. Lee. 2008. Enzyme-linked immunosorbent assay, single radial immunodiffusion, and indirect methods for the detection of failure of transfer of passive immunity in dairy calves. J. Vet. Intern. Med., 22(1): 212-218. DOI: 10.1111/j.1939-1676.2007.0013.x

Lopez, A.J. and A.J. Heinrichs. 2022. Invited review: The importance of colostrum in the newborn dairy calf. J. Dairy Sci., 105(4): 2733-2749. DOI: 10.3168/jds.2020-20114

Maltecca, C., K.A. Weigel, H. Khatib, M. Cowan and A. Bagnato. 2009. Whole‐genome scan for quantitative trait loci associated with birth weight, gestation length and passive immune transfer in a Holstein×Jersey crossbred population. Anim. Genet., 40(1): 27-34. DOI: 10.1111/j.1365-2052.2008.01793.x

Martin, P., A. Vinet, C. Denis, C. Grohs, L. Chanteloup, D. Dozias, D. Maupetit, J. Sapa, G. Renand and F. Blanc. 2021. Determination of immunoglobulin concentrations and genetic parameters for colostrum and calf serum in Charolais animals. J. Dairy Sci., 104(3): 3240-3249. DOI: 10.3168/jds.2020-19423

Mastellone, V., G. Massimini, M.E. Pero, L. Cortese, D. Piantedosi, P. Lombardi, D. Britti and L. Avallone. 2011. Effects of passive transfer status on growth performance in buffalo calves. Asian-Austral. J. Anim. Sci., 24(7): 952-956. DOI: 10.5713/ajas.2011.10348

McGuirk, S.M. and M. Collins. 2004. Managing the production, storage, and delivery of colostrum. Vet. Clin. N. Am. Food Pract., 20(3): 593-603. DOI: 10.1016/j.cvfa.2004.06.005

Meganck, V., G. Hoflack and G. Opsomer. 2014. Advances in prevention and therapy of neonatal dairy calf diarrhoea: A systematical review with emphasis on colostrum management and fluid therapy. Acta Vet. Scan., 56(1): 1-8. DOI: 10.1186/s13028-014-0075-x

Morin, D.E., G.C. McCoy and W.L. Hurley. 1997. Effects of quality, quantity, and timing of colostrum feeding and addition of a dried colostrum supplement on immunoglobulin G1 absorption in Holstein bull calves. J. Dairy Sci., 80(4): 747-753. DOI: 10.3168/jds.S0022-0302(97)75994-0

Morin, D.E., S.V. Nelson, E.D. Reid, D.W. Nagy, G.E. Dahl and P.D. Constable. 2010. Effect of colostral volume, interval between calving and first milking, and photoperiod on colostral IgG concentrations in dairy cows. J. Am. Vet. Med. Assoc., 237(4): 420-428. DOI: 10.2460/javma.237.4.420

Mugnier, A., K. Pecceu, F. Schelcher and F. Corbiere. 2020. A parallel evaluation of 5 indirect cost-effective methods for assessing failure of passive immunity transfer in neonatal calves. JDS Communications, 1(1): 10-14. DOI: 10.3168/jdsc.2019-17931

Muller, L.D. and D.K. Ellinger. 1981. Colostral immunoglobulin concentration amomg breeds of dairy cattle. J. Dairy Sci., 64: 1727-1730. DOI: 10.3168/jds.S0022-0302(81)82754-3

Norheim, K., E. Simensen and K.E. Gjestang. 1985. The relationship between serum IgG levels and age, leg injuries, infections and weight gains in dairy calves. Nord. Vet. Med., 37(3): 113-120.

Norman, L.M., W.D. Hohenboken and K.W. Kelley. 1981. Genetic differences in concentration of immunoglobulins G1 and M in serum and colostrum of cows and in serum of neonatal calves. J. Anim. Sci., 53(6): 1465-1472. DOI: 10.2527/jas1982.5361465x

Osaka, I., Y. Matsui and F. Terada. 2014. Effect of the mass of immunoglobulin (Ig) G intake and age at first colostrum feeding on serum IgG concentration in Holstein calves. J. Dairy Sci., 97(10): 6608-6612. DOI: 10.3168/jds.2013-7571

Oyeniyi, O.O. and A.G. Hunter. 1978. Colostral constituents including immunoglobulins in the first three milkings postpartum. J. Dairy Sci., 61(1): 44-48. DOI: 10.3168/jds.S0022-0302(78)83549-8

Playford, R.J. and M.J. Weiser. 2021. Bovine colostrum: Its constituents and uses. Nutrients, 13(1): 265. DOI: 10.3390/nu13010265

Pritchett, L.C., C.C. Gay, T.E. Besser and D.D. Hancock. 1991. Management and production factors influencing immunoglobulin G1 concentration in colostrum from Holstein cows. J. Dairy Sci., 74(7): 2336-2341. DOI: 10.3168/jds.S0022-0302(91)78406-3

Puppel, K., M. Gołębiewski, G. Grodkowski, J. Slósarz, M. Kunowska-Slósarz, P. Solarczyk, M. Łukasiewicz, M. Balcerak and T. Przysucha. 2019. Composition and factors affecting quality of bovine colostrum: A review. Animals, 9(12): 1070. DOI: 10.3390/ani9121070

Quigley Iii, J.D., J.J. Drewry and K.R. Martin. 1998. Estimation of plasma volume in Holstein and Jersey calves. J. Dairy Sci., 81(5): 1308-1312. DOI: 10.3168/jds.S0022-0302(98)75693 -0

Raboisson, D., P. Trillat and C. Cahuzac. 2016. Failure of passive immune transfer in calves: A meta-analysis on the consequences and assessment of the economic impact. PloS ONE, 11(3). DOI: 10.1371/journal.pone.0150452

Silva-del-Río, N., D. Rolle, A. García-Muñoz, S. Rodríguez-Jiménez, A. Valldecabres, A. Lago and P. Pandey. 2017. Colostrum immunoglobulin G concentration of multiparous Jersey cows at first and second milking is associated with parity, colostrum yield, and time of first milking, and can be estimated with Brix refractometry. J. Dairy Sci., 100(7): 5774-5781. DOI: 10.3168/jds.2016-12394

Souza, D.C.D., D.G. Da Silva, L.C.C. Fonseca, L. de Castro Fiori, B.M. Monteiro, O. Bernardes, R.B. Viana and J.J. Fagliari. 2020. Passive immunity transfer in Water buffaloes (Bubalus bubalis). Frontiers in Veterinary Science, 7: 247. DOI: 10.3389/fvets.2020.00247

Stilwell, G. and R.C. Carvalho. 2011. Clinical outcome of calves with failure of passive transfer as diagnosed by a commercially available IgG quick test kit. Canadian Vet. J., 52(5): 524.

Sutter, F., E. Rauch, M. Erhard, R. Sargent, C. Weber, W. Heuwieser and S. Borchardt. 2020. Evaluation of different analytical methods to assess failure of passive transfer in neonatal calves. J. Dairy Sci., 103(6): 5387-5397. DOI: 10.3168/jds.2019-17928

Tizard, I.R. 1996. Veterinary Immunology: An Introduction, 5th ed. Saunders, Philadelphia, USA.

Todd, C.G., M. McGee, K. Tiernan, P. Crosson, E. O’Riordan, J. McClure, I. Lorenz and B. Earley. 2018. An observational study on passive immunity in Irish suckler beef and dairy calves: Tests for failure of passive transfer of immunity and associations with health and performance. Prev. Vet. Med., 159(1): 182-195. DOI: 10.1016/j.prevetmed.2018.07.014

Ulfman, L.H., J.H. Leusen, H.F. Savelkoul, J.O. Warner and R.J. Van Neerven. 2018. Effects of bovine immunoglobulins on immune function, allergy, and infection. Front. Nutr., 5: 52. DOI: 10.3389/fnut.2018.00052

Uttam, S., B. Singh, J.K. Chaudhary, S. Bassan, S. Kumar and N. Gupta. 2015. Analysis of morbidity and mortality rate in bovine under village conditions of Uttar Pradesh. Bioscan, 10(2): 585-591.

Verma, U.K., S. Kumar, A.K. Ghosh, S. Kumar, R.S. Barwal and B.N. Sahi. 2018. Determination of immunoglobulin G (IgG) concentration in buffalo colostrum and serum of new born calves by indirect ELISA. Journal of Pharmacognosy and Phytochemistry, 7: 1233-1235.

Vlasova, A.N. and L.J. Saif. 2021. Bovine Immunology: Implications for dairy cattle. Front. Immunol., 12: DOI: 10.3389/fimmu.2021.643206

Weaver, D.M., J.W. Tyler, D.C. VanMetre, D.E. Hostetler and G.M. Barrington. 2000. Passive transfer of colostral immunoglobulins in calves. J. Vet. Intern. Med., 14(6): 569-577. DOI: 10.1892/0891-6640(2000)014<0569:ptocii>2.3.co;2

Downloads

Published

2022-09-28

How to Cite

Agrawal, S., Kumar, T., Chaudhary, R., Lionel, A. P., & Kumar, S. (2022). Assaying the concentration of immunoglobulin G in colostrum from females postpartum and serum from neonatal calves of buffaloes (Bubalus bubalis). Buffalo Bulletin, 41(3), 493–509. https://doi.org/10.56825/bufbu.2022.4134858

Issue

Section

Original Article