The effects of solute carrier family 27 member 1 (SLC27A1) genotypes on fat content and major fatty acids in colostrum and milk from Murrah and “Murrah × Carabao” crossbred buffaloes

Authors

  • Pauve Sofia Ariate Bañadera Institute of Animal Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines
  • Orville Ledesma Bondoc Institute of Animal Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines

DOI:

https://doi.org/10.56825/bufbu.2024.4335815

Keywords:

Bubalus bubalis, buffaloes, Murrah Carabao, colostrum, milk fatty acids, SLC27A1 genotypes

Abstract

This study analyzed the effect of Solute carrier family 27 member 1 (SLC27A1) genotypes on fat content and major fatty acids (lauric acid C12:0, myristic acid C14:0, palmitic acid C16:0, stearic acid C18:0, and oleic acid C18:1n-9) in milk and colostrum of 46 Murrah and “Murrah × Carabao” crossbred buffaloes at the Philippine Carabao Center - University of the Philippines Los Baños dairy herd. The SLC27A1 genotypes (CC and CT) were determined by the polymerase chain reaction-restricted fragment length polymorphism (PCR-RFLP) method using DNA extracted from hair follicles. This study found polymorphism in the SLC27A1 gene that were consistent with Hardy Weinberg’s law of equilibrium (HWE), with a polymorphic information content (PIC) and heterozygosity (H) estimate of 0.2915 and 0.3542, respectively, for Murrah; and 0.3219 and 0.4032, respectively for “Murrah × Carabao” crossbreeds. In Murrah buffaloes, the CT genotype was significantly associated (P<0.05) with higher colostrum yield and milk fat content, compared to CC. In “Murrah × Carabao” crossbreds, CT was associated with higher C12:0, C14:0, and C16:0, but lower C18:1n-9 in colostrum; and lower C16:0 in milk compared to CC. This study showed polymorphisms in SLC27A1 genotypes and their significant effects on colostrum yield and milk fat content in Murrah buffaloes and some major fatty acids in colostrum and milk from “Murrah × Carabao” crosses.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Pauve Sofia Ariate Bañadera, Institute of Animal Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines

Pauve Sofia Ariate Bañadera

Orville Ledesma Bondoc, Institute of Animal Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna, Philippines

Orville Ledesma Bondoc*

olbondoc@up.edu.ph

References

Bondoc, O.L. and A.R. Ramos. 2022. Fatty acid composition and nutritional indices/ratios of colostrum and milk from Murrah and “Murrah × Carabao” crossbred buffaloes. Philippine Journal of Science, 151(1): 139-152. DOI: 10.56899/151.01.10

Ceniti, C., N. Costanzo, V.M. Morittu, B. Tilocca, P. Roncada and D. Britti. 2022. Review: Colostrum as an emerging food: Nutraceutical properties and food supplement. Food Rev. Int., 39(13): 1-29. DOI: 10.1080/87559129.2022.2034165

Chen, J. and H. Liu. 2020. Nutritional indices for assessing fatty acids: A mini-review. Int. J. Mol. Sci., 21(16): 5695. DOI: 10.3390/ijms21165695

Cosenza, G., N.P. Macciotta, A. Nudda, A. Coletta, L. Ramunno and A. Pauciullo. 2017. A novel polymorphism in the oxytocin receptor encoding gene (OXTR) affects milk fatty acid composition in Italian Mediterranean river buffalo. J. Dairy Res., 84(2): 170-180. DOI: 10.1017/S0022029917000127

Cosenza, G., M. Iannaccone, B. Auzino, N.P.P. Macciotta, A. Kovitvadhi, I. Nicolae and A. Pauciullo. 2018. Remarkable genetic diversity detected at river buffalo prolactin receptor (PRLR) gene and association studies with milk fatty acid composition. Anim. Genet., 49(3): 159-168. DOI: 10.1111/age.12645

Dietschy, J.M. 1998. Dietary fatty acids and the regulation of plasma low density lipoprotein cholesterol concentrations. J. Nutr., 128(2): 444-448. DOI: 10.1093/jn/128.2.444S

Gimeno, R.E. 2007. Fatty acid transport proteins. Curr. Opin. Lipidol., 18(3): 271-276. DOI: 10.1097/MOL.0b013e3281338558

Hayesmoore, J.B.G. 2023. Gene Calculators. Available on: https://www.genecalculators.net/pq-chwe-polypicker.html

Li, Y., H. Zhou, L. Cheng, G.R. Edwards and J.G. Hickford. 2021. Effect of DGAT1 variant (K232A) on milk traits and milk fat composition in outdoor pasture-grazed dairy cattle. New. Zeal. J. Agr. Res., 64(1): 101-113. DOI: 10.1080/00288233.2019.1589537

Mauric, M., T. Masek, D.B. Ljoljic, J. Grbavac and K. Starcevic. 2019. Effects of different variants of the FASN gene on production performance and milk fatty acid composition in Holstein × Simmental dairy cows. Vet. Med.-Czech, 64(3): 101-108. DOI: 10.17221/73/2018-VETMED

Mehra, R., R. Singh, V. Nayan, H.S. Buttar, N. Kumar, S. Kumar, A. Bhardwaj, R. Kaushik and H. Kumar. 2021. Nutritional attributes of bovine colostrum components in human health and disease: A comprehensive review. Food Bioscience, 40. DOI: 10.016/j. fbio.2021.100907

Mensink, R.P. 2005. Effects of stearic acid on plasma lipid and lipoproteins in humans. Lipids, 40(12): 1201-1205. DOI: 10.1007/s11745-005-1486-x

National Dairy Authority (NDA). 2022. Philippine Dairy Update, January to December 2022. Department of Agriculture, National Dairy Authority, Quezon, Philippines. Available on: https://nda.da.gov.ph/philippine-dairy-update-2/

O’Callaghan, T.F., M. O’Donovan, J.P. Murphy, K. Sugrue, D. Mannion, W.P. McCarthy, M. Timlin, K.N. Kilcawley, R.M. Hickey and J.T. Tobin. 2020. Evolution of the bovine milk fatty acid profile - from colostrum to milk five days post parturition. Int. Dairy J., 104: 1-8. DOI: 10.1016/J.IDAIRYJ.2020.104655

Ordovas, L., P. Zaragoza, J. Altarriba and C. Rodellar. 2008. Identification of 14 new single nucleotide polymorphisms in the bovine SLC27A1 gene and evaluation of their association with milk fat content. J. Dairy Res., 75(2): 129-134. DOI: 10.1017/S0022029907002919

Polasik, D., J. Golinczak, W. Proskura, A. Terman and A. Dybus. 2021. Association between THRSP gene polymorphism and fatty acid composition in milk of dairy cows. Animals, 11(4): 1144. DOI: 10.3390/ani11041144

Rincon, G., A. Islas-Trejo, A.R. Castillo, D.E. Bauman, B.J. German and J.F. Medrano. 2012. Polymorphisms in genes in the SREBP1 signalling pathway and SCD are associated with milk fatty acid composition in Holstein cattle. J. Dairy Res., 79(1): 66-75. DOI: 10.1017/S002202991100080X

Schennink, A.W.M., J.M.L. Heck, M.H.P.W. Visker, H.J.F. van Valenberg and J.A.M. van Arendonk. 2008. Milk fatty acid unsaturation: genetic parameters and effects of Stearoyl-CoA Desaturase (SCD1) and Acyl CoA: Diacylglycerol Acyltransferase 1 (DGAT1). J. Dairy Sci., 91(5): 2135-2143. DOI: 10.3168/jds.2007-0825

Siri-Tarino, P.W., Q. Sun, F.B. Hu and R.M. Krauss. 2010. Meta-analysis of prospective cohort studies evaluating the association of saturated fat with cardiovascular disease. Am. J. Clin. Nutr., 91(3): 535-546. DOI: 10.3945/ajcn.2009.27725

Statistical Analysis System, SAS. 2009. SAS/STAT 9.2 User’s Guide, 2nd ed. SAS Institute, Inc. Cary, North Carolina, USA.

Stoop, W.M., J.A.M. Van Arendonk, J.M.L Heck, H.J.F. van Valenberg and H. Bovenhuis. 2008. Genetic parameters for major milk fatty acids and milk production traits of Dutch Holstein-Friesians. J. Dairy Sci., 91(1): 385-394. DOI: 10.3168/jds.2007-0181

Temme, E.H., R.P. Mensink and G. Hornstra. 1997. Effects of medium chain fatty acids (MCFA), myristic acid, and oleic acid on serum lipoproteins in healthy subjects. J. Lipid Res., 38(9): 1746-1754. DOI: 10.1016/S0022-2275(20)37149-2

Ulbricht, T.L.V. and D.A.T. Southgate. 1991. Coronary heart disease: Seven dietary factors. Lancet, 338(8773): 985-992. DOI: 10.1016/0140-6736(91)91846-m

Downloads

Published

2024-09-30

How to Cite

Bañadera, P. S. A., & Bondoc, O. L. (2024). The effects of solute carrier family 27 member 1 (SLC27A1) genotypes on fat content and major fatty acids in colostrum and milk from Murrah and “Murrah × Carabao” crossbred buffaloes. Buffalo Bulletin, 43(3), 459–471. https://doi.org/10.56825/bufbu.2024.4335815

Issue

Section

Original Article