DYNAMICS OF ESTRUS BEHAVIOUR IN BUFFALOES: LOOKING AT VARIOUS REPRODUCTIVE ASPECTS RELATED TO ESTRUS AND METHODS FOR DETECTION
DOI:
https://doi.org/10.56825/bufbu.2025.4434286Keywords:
Bubalus bubalis, buffaloes, estradiol, estrus, FSH, LH, livestock, reproduction, polyestrous, progesteroneAbstract
Buffaloes are the main milk producing units of India and are the backbone of Indian milk industries. Due to their significant contribution to reasonably priced and nutrient-dense animal protein, which will assist address global nutritional security, the demand for wholesome buffalo food items is still rising worldwide. Early estrus identification is one of the most crucial factors for buffaloes to reproduce more successfully. Buffaloes are seasonal polyestrous breeders and silent heat animals. This review article aims to highlight the importance of traditionally available methods and the non-invasive methods which are being attempted to detect estrus in buffaloes keeping in view the various factors influencing the estrus cycle and visualizing the molecular events associated with the ovarian physiology leading to the estrus cycle. Detection of silent estrus with the combinatorial use of traditionally available methods only may be difficult to identify individual animal in estrus by the farmer alone. Interventions in existing management practices can manifest estrus nicely. Many non-invasive methods/ assays/ tools to aid estrus detection have been attempted, but none have been proven efficient or reliable to be used at the field level by the small and/ marginal farmers. Therefore, a detailed study of the multiple factors influencing the estrus behaviour, reproductive endocrinology and expression of genes associated with molecular pathways related to estrus is required. This may in turn pave the way for not only the identification of new molecules related to estrus behaviour but also enhances the efficiency of non-invasive methods to detect estrus in buffaloes.
Downloads
Metrics
References
Ahmad, S., I. Gaucher, F. Rousseau, E. Beaucher, M. Piot, J.F. Grongnet and F. Gaucheron. 2008. Effects of acidification on physico-chemical characteristics of buffalo milk: A comparison with cow’s milk. Food Chem., 106(1): 11-17. 10.1016/j.foodchem.2007.04.021
Almeida, F.R.C.L., N.G.J. Costermans, N.M. Soede, A. Bunschoten, J. Keijer and B. Kemp. 2018. Presence of anti-Mullerian hormone (AMH) during follicular development in the porcine ovary. PLoS One., 13(7): e0197894. DOI: 10.1371/journal.pone.0197894
Archunan, G. 2009. Vertebrate pheromones and their biological importance. J. Exp. Zool., 12(2): 227-239.
Barkawi, A.H., Y.M. Hafez, S.A. Ibrahim, G. Ashour, K. Amal, K. El-Asheeri and N. Ghanem. 2009. Characteristics of ovarian follicular dynamics throughout the estrous cycle of Egyptian buffaloes. Anim. Reprod. Sci., 110(3-4): 326-334. DOI: 10.1016/j.anireprosci.2008.02.016
Baruselli, P.S., R.G. Mucciolo, J.A. Visintin, W.G. Viana, R.P. Arruda, E.H. Madureira, C.A. Oliveira and J.R. Molero-Filho. 1997. Ovarian follicular dynamics during the estrous cycle in buffalo (Bubalus bubalis). Theriogenology, 47(8): 1531-1547. DOI: 10.1016/S0093-691X(97)00159-3
Bashir, S.T., G.M. Ishak, M.O. Gastal, J.F. Roser and E.L. Gastal. 2016. Changes in intrafollicular concentrations of free IGF-1, activin A, inhibin A, VEGF, estradiol, and prolactin before ovulation in mares. Theriogenology, 85(8): 1491-1498. DOI: 10.1016/j.theriogenology.2016.01.013
Batra, S.K. and R.S. Pandey. 1982. Luteinizing hormone and estradiol -17β in blood plasma and milk during estrous cycle and early pregnancy in Murrah buffaloes. Anim. Reprod. Sci., 5(4): 247-257. DOI: 10.1016/0378-4320(83)90046-5
Borady, A.M.A., A.E. Asdelaal and H.A.M. Farghaly. 1987. Seasonal variation in thyroid hormones and reproduction in Egyptian water buffalo. Egyptian Journal of Animal Production, 25: 82-92.
Brennan, P.A. and K.M. Kendrick. 2006. Mammalian social odours: attraction and individual recognition. Philos. T. R. Soc. B., 361(1476): 2061-2078. DOI: 10.1098/rstb.2006.1931
Buccione, R., A.C. Schoroeder and J.J. Eppig. 1990. Interactions between somatic cells and germ cells throughout mammalian oogenesis. Biol. Reprod., 43(4): 543-547. DOI: 10.1095/biolreprod43.4.543
Capra, E., B. Lazzari, M. Russo, M.A. Kosior, G.D. Valle, V. Longobardi, A. Stella, A.L. Consiglio and B. Gasparrini. 2020. Seasonal effects on miRNA and transcriptomic profile of oocytes and follicular cells in buffalo (Bubalus bubalis). Sci. Rep.-UK., 10(1): 13557. DOI: 10.1038/s41598-020-70546-5
Cecconi, S. and R. Colonna. 1996. Influence of granulosa cells and of different somatic cell types on mammalian oocyte development in vitro. Zygote, 4(4): 305-307. DOI: 10.1017/s0967199400003294
Celestino, J.J.H., M.H.T. Matos, M.V.A. Saraiva and J.R. Figueiredo. 2009. Regulation of ovarian folliculogenesis by Kit Ligand and the c-Kit system in mammals. Anim. Reprod., 6(3): 431-439.
De Carvalho, N.A.T., J.G. Soares and P.S. Baruselli. 2016. Strategies to overcome seasonal anestrus in water buffalo. Theriogenology, 86(1): 200-206. DOI: 10.1016/j.theriogenology.2016.04.032
Danell, B., N. Gopakumar, M.C.S. Nair and K. Rajagopalan. 1984. Heat symptoms and detection in Surti buffalo heifers. Indian J. Anim. Res., 5: 1-7.
Devi, I., P. Singh, S.S. Lathwal, A. Kumaresan and K. Dudi. 2016. Evaluation of salivary electrolytes during estrous cycle in Murrah buffaloes with reference to estrus detection. Vet. World, 9(10): 1157-1161. DOI: 10.14202/vetworld.2016.1157-1161
Deitch, E.A., S.C. Beck, N.C. Cruz and A. Demaio. 1995. Induction of heat shock gene expression in colonic epithelial cells after incubation with Escherichia coli or endotoxin. Crit. Care. Med., 23(8): 1371-1376. DOI: 10.1097/00003246-199508000-00010
D’Occhio, M.J., S.S. Ghuman, G. Neglia, G.D. Valle, P.S. Baruselli, L. Zicarelli, A.V. Jose, M. Sarkar and G. Campanile. 2020. Exogenous and endogenous factors in seasonality of reproduction in buffalo: A review. Theriogenology, 150(1): 186-192. DOI: 10.1016/j.theriogenology.2020.01.044
Domenech, A., S. Pich, A. Aris, C. Plasencia, A. Bach and A. Serrano. 2011. Heat identification by 17β-estradiol and progesterone quantification in individual raw milk samples by enzyme immunoassay. Electron. J. Biotechn., 14(4): 10.
Erickson, G.F. and S. Shimasaki. 2001. The physiology of folliculogenesis: the role of novel growth factors. Fertil. Steril., 76(5): 943-949. DOI: 10.1016/s0015-0282(01)02859-x
FAOSTAT. 2005. FAOSTAT Agriculture Data, Food and Agriculture Organization Statistics, Rome, Italy.
Faustino, L.R., I.M.T. Lima, A.A. Carvalho, C.M.G. Silva, S.V. Castro, C.H. Lobo, C.M. Lucci, C.C. Campello, J.R. Figueiredo and A.P.R. Rodrigues. 2013. Interaction between keratinocyte growth factor-1 and kit ligand on the goat preantral follicles cultured in vitro. Small Ruminant Res., 114(1): 112-119. DOI: 10.1016/j.smallrumres.2013.05.002
Fehrenbach, E. and A.H. Niess. 1999. Role of heat shock proteins in the exercise response. Exerc. Immunol. Rev., 5: 57-77.
Fortune, J.E., R.A. Cushman, C.M. Wahl and S. Kito. 2000. The primordial to primary follicle transition. Mol. Cell. Endocrinol., 163: 53-60.
Galhotra, M.M., M.L. Kaker, I.S. Lohan, S.P. Singal and M.N. Razdan. 1988. Thyroid and prolactin status in relation to production in lactating Murrah. In Proceedings of 2nd World Buffalo Congress, New Delhi, India.
Garcia, M.C., S.M. Mcdonell, R.M. Kenny and H.G. Osborne. 1986. Bull sexual behavior tests: Stimulus cow affects performance. Appl. Ani. Behav. Sci., 16: 1-10. DOI: 10.1016/0168-1591(86)90035-3
Ginther, O.J., L. Knopf and J.P. Kastelic. 1989. Temporal associations among ovarian events in cattle during oestrous cycle with two and three follicular waves. J. Reprod. Fertil., 87(1): 223-228. DOI: 10.1530/jrf.0.0870223
Gophna, U. and E.Z. Ron. 2003. Virulence and the heat shock response. Int. J. Med. Microbiol., 292(7-8): 453-461. DOI: 10.1078/1438-4221-00230
Gao, F., J. Zhang, X. Wang, J. Yang, D. Chen, V. Huff and Y. Liu. 2014. Wt1 functions in ovarian follicle development by regulating granulosa cell differentiation. Hum. Mol. Genet., 23(2): 333-341. DOI: 10.1093/hmg/ddt423
Gura, A. and R.N. Freiman. 2018. Primordial follicle Megan. Encyclopedia of Reproduction, 2nd ed. 2: 65-71.
Groschl, M. 2009. The physiological role of hormones in saliva. Bioessays, 31(8): 843-852. DOI: 10.1002/bies.200900013
Hannon, P.R. and T.E. Curry. 2018. Folliculogenesis. Encyclopedia of Reproduction, 2nd ed. 2: 72-79.
Heranjal, D.D., A.R. Sheth, K.B. Wadedekar, R. Desai and S.S. Rao. 1979. Serum gonadotropins and prolactin levels in anoestrus buffaloes. Indian J. Dairy Sci., 32: 383-385.
Hillier, S.G. 2001. Gonadotropic control of ovarian follicular growth and development. Mol. Cell. Endocrinol., 179(1-2):39-46. DOI: 10.1016/s0303-7207(01)00469-5
Hosoe, M., K. Kaneyama, K. Ushizawa, K.Y. Hayashi and J. Takahashi. 2011. Quantitative analysis of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) gene expression in calf and adult bovine ovaries. Reprod. Biol. Endocrin., 9: 33. DOI: 10.1186/1477-7827-9-33
Hradecky, P. 1975. Occurrence of volatile compounds and possibilities of their determination using gas chromatography. Czech Literature Review for Graduate Study, University of Veterinary Medicine, Brno, Czechoslovakia. 185p.
Janakiraman, K., M.C. Desai, D.R. Amin, A.R. Sheth, S.B. Moodbidri and K.B. Wadadekar. 1980. Serum gonadotropin levels in buffaloes in relation to phases of oestrous cycle and breeding periods. Indian J. Anim. Sci., 50: 601-606.
Jones, A.S.K. and A. Shikanov. 2019. Follicle development as an orchestrated signaling network in a 3D organoid. J. Biol. Eng., 13(1): 2. DOI: 10.1186/s13036-018-0134-3
Joshi, S.K., T.K. Mohanty, A. Kumaresan, M. Bhakat and S. Sathapathy. 2020. Changes in teat morphology (Doka Phenomenon) and estrus prediction in Riverine buffaloes (Bubalus bubalis). Indian J. Anim. Res., 54(1): 16-19. DOI: 10.18805/ijar.B-3517
Kaur, H. and S.P. Arora. 1984. Annual pattern of plasma progesterone in normal cycling buffaloes (Bubalus bubalis) fed two levels of nutrition. Anim. Reprod. Sci., 7(4): 323-332. DOI: 10.1016/0378-4320(84)90017-4
Kaker, M.L., M.N. Razdan and M.M. Galhotra. 1982. Serum prolactin levels of non cycling Murrah buffalo (Bubalus bubalis). Theriogenology, 17(5): 469-474. DOI: 10.1016/0093-691X(82)90173-X
Karthikeyan, K., S. Muniyasami, D.S. Ganesh, S. Achiraman and G. Archunan. 2013. Faecal chemical cues in water buffalo that facilitate estrus detection. Anim. Reprod. Sci., 138(3-4): 163-167. DOI: 10.1016/j.anireprosci.2013.02.017
Karthikeyan, K., P. Manivannan, D. Rajesh, S. Muthukumar, G. Muralitharan, M.A. Akbarsha and G. Archunan. 2014. Identification of p-Cresol as an estrus-specific volatile in buffalo saliva: Comparative docking analysis of buffalo obp and β-Lactoglobulin with p-Cresol. Zool. Sci., 31(1): 31-36. DOI: 10.2108/zsj.31.31
Keverne, E.B. 1983. Pheromonal influences on the endocrine regulation of reproduction. Trends. Neurosci., 6: 381-384. DOI: 10.1016/0166-2236(83)90170-4
Kerr, B., C. Garcia-Rudaz, M. Dorfman, A. Dorfman, A. Paredes and S.R. Ojeda. 2009. NTRK1 and NTRK2 receptors facilitate follicle assembly and early follicular development in the mouse ovary. Reproduction, 138(1): 131-140. DOI: 10.1530/REP-08-0474
Khalid, M., W. Haresign and M.R. Luck. 2000. Secretion of IGF-1 by ovine granulosa cells: effects of growth hormone and follicle stimulating hormone. Anim. Reprod. Sci., 58(3-4): 261-272. DOI: 10.1016/s0378-4320(99)00075-5
Kidder, G.M. and A.A. Mhawi. 2002. Gap junctions and ovarian folliculogenesis. Reprod., 123(6): 613-620. DOI: 10.1530/rep.0.1230613
Khanna, A., R.F. Aten and H.R. Behrman. 1995. Heat shock protein-70 induction mediates luteal regression in the rat. Mol. Endocrinol., 9(11): 1431-1440. DOI: 10.1210/mend.9.11.8584020
Kiriyama, M.T., M. Oka, M. Takehana and S. Kobayashi. 2001. Expression of a small heat shock protein 27 (HSP27) in mouse skin tumors induced by UVB-irradiation. Biological and Pharmaceutical Bulletin, 24(2): 197-200. DOI: 10.1248/bpb.24.197
Knight, P.G., L. Satchell and C. Glister. 2011. Intra-ovarian roles of activins and inhibins. Mol. Cell. Endocrinol., 359(1-2): 53-65. DOI: 10.1016/j.mce.2011.04.024
Kumar, P.R., S.N. Shukla, O.P. Shrivastava and R.D. Purkayastha. 2013. Incidence of postpartum anestrus among buffaloes in and around Jabalpur. Vet. World, 6(10): 716-719. DOI: 10.14202/vetworld.2013.716-719
Layek, S., T. Mohanty, A. Kumaresan, K. Behera and S. Chand. 2011. Behavioural signs of estrus and their relationship to time of ovulation in Zebu (Sahiwal) cattle. Anim. Reprod. Sci., 129(3-4): 140-145. DOI: 10.1016/j.anireprosci.2011.11.006
Lee, W.S., S.J. Yoon, T.K. Yoon, K.Y. Cha, S.H. Lee, S. Shimasaki, S. Lee and K.A. Lee. 2004. Effects of bone morphogenetic protein-7 (BMP-7) on primordial follicular growth in the mouse ovary. Mol. Reprod. Dev., 69: 159-163. DOI: 10.1002/mrd.20163
Liu, Z. and D.M. Stocco. 1997. Heat shock-induced inhibition of acute steroidogenesis in MA-10 cells is associated with inhibition of the synthesis of the steroidogenic acute regulatory protein. Endocrinology, 138(7): 2722-2728. DOI: 10.1210/endo.138.7.5278
McGee, E.A., S.Y. Chun, S. Lai, Y.E. He and A.J.W. Hsueh. 1999. Keratinocyte growth factor promotes the survival, growth, and differentiation of preantral ovarian follicles. Fertil. Steril., 71(4): 732-738. DOI: 10.1016/s0015-0282(98)00547-0
McGee, E.A. and A.J. Hsueh. 2000. Initial and cyclic recruitment of ovarian follicles. Endocr. Rev., 21(2): 200-214. DOI: 10.1210/edrv.21.2.0394
Mondal, S. and B.S. Prakash. 2002b. Peripheral plasma progesterone concentration in relation to estrus expression in Murrah buffalo (Bubalus bubalis). Indian J. Anim. Sci., 73(3): 292-293.
Mondal, S. and B.S. Prakash. 2002a. Peripheral plasma progesterone concentration in relation to estrus expression in Sahiwal cows and Murrah buffaloes. Reproduction, 28: 29-30.
Mondal, S., B.S. Prakash and P. Palta. 2003b. Peripheral plasma inhibin concentrations in relation to expression of oestrus in Murrah buffaloes (Bubalus bubalis). Indian J. Anim. Sci., 73(4): 405-407.
Muniasamy, S., R. Muthuselvam, S. Rajanarayanan, V. Ramesh Saravanakumar and G. Archunan. 2017. p-cresol and oleic acid as reliable biomarkers of estrus: Evidence from synchronized Murrah buffaloes. Iran. J. Vet. Res., 18(2): 124-127.
Murphy, M.G., W.J. Enright, M.A. Crowe, K. McConnell, L.J. Spicer, M.P. Boland and J.F. Roche. 1991. Effect of dietary intake on pattern of growth of dominant follicles during the oestrous cycle of beef heifers. J. Reprod. Fertil., 92(2): 333-338. DOI: 10.1530/jrf.0.0920333
Muthukumar, S., R. Rajkumar, D. Rajesh, G. Saibaba, C.C. Liao, G. Archunan, P. Padmanabhan and B. Gulyas. 2014b. Exploration of salivary proteins in buffalo: an approach to find marker proteins for estrus. FASEB J., 28(11): 4700-4709. DOI: 10.1096/fj.14-252288
Muthukumar, S., R. Rajkumar, K. Karthikeyan, C.C. Liao, D. Singh, M.A. Akbarsha and G. Archunan. 2014a. Buffalo cervico-vaginal fluid proteomics with special reference to estrous cycle: Heat shock protein (HSP)-70 appears to be an estrus indicator. Biol. Reprod., 90(5): 97. DOI: 10.1095/biolreprod.113.113852
Nanda, A.S., P.S. Brar and S. Prabhakar. 2003. Enhancing reproductive performance in dairy buffalo: Major constraints and achievements. Reprod. Suppl., 61: 27-36. Available on: https://scispace.com/pdf/enhancing-reproductive-performance-in-dairy-buffalo-major-2x2pit98f1.pdf
NDDB. 2019. World’s First complete parent-wise genome assembly of buffalo. The Hindu Business Line, National Dairy Development Board, India. Available on: https://www.thehindubusinessline.com/news/dairy-board-develops-worlds-first-complete-parent-wise-genome-assembly-of-buffalo/article27092903.ece
Noakes, D.E., T.J. Parkinson, G.C.W. England and G.H. Arthur. 2001. Arthur’s Veterinary Reproduction and Obstetrics, 8th ed., Harcourt Publishers Limited, Pennsylvania, USA.
Noseir, W.M.B. 2003. Ovarian follicular activity and hormonal profile during estrous cycle in cows: The development of 2 versus 3 waves. Reprod. Biol. Endocrin., 1: 1-6. DOI: 10.1186/1477-7827-1-50
Paul, S.S., A.B. Mandal, G.P. Mandal, A. Kannan and N.N. Pathak. 2003. Comparative dry matter intake and nutrient utilization efficiency in lactating cattle and buffaloes., J. Sci. Food. Agric., 83(4): 258-267. DOI: 10.1002/jsfa.1305
Phogat, J.B., A.K. Pandey and I. Singh. 2016. Seasonality in buffaloes reproduction. International Journal of Plant, Animal and Environmental Sciences, 6(2): 46-55. Available on: https://www.fortunejournals.com/ijpaes/admin/php/uploads/949_pdf.pdf
Rahe, C.H., R.E. Owens, J.L. Fleiger, H.J. Newton and P.G. Harms. 1980. Pattern of plasma luteinizing hormone in the cyclic cow: Dependence upon the period of the cycle. Endocrinol., 107(2): 498-505. DOI: 10.1210/endo-107-2-498
Rajanarayanan, S. and G. Archunan. 2011. Identification of urinary sex pheromones in female buffaloes and their influence on bull reproductive behaviour. Res. Vet. Sci., 91(2): 301-305. DOI: 10.1016/j.rvsc.2010.12.005
Ramadan, T.A. 2017. Role of melatonin in reproductive seasonality in buffaloes, p.88-107. In Carreira, R.P. (edn.) Theriogenology, DOI: 10.5772/intechopen.69549
Rao, T.K.S., N. Kumar, P. Kumar, S. Chaurasia and N.B. Patel. 2013. Heat detection techniques in cattle and buffalo. Vet. World, 6(6): 363-369. DOI: 10.5455/vetworld.2013.363-369
Rao, L.V. and R.S. Pandey. 1982. Seasonal changes in plasma progesterone concentrations in buffalo cows (Bubalus bubalis). J. Reprod. Fertil., 66(1): 57-61. DOI: 10.1530/jrf.0.0660057
Rao, L.V. and R.S. Pandey. 1983. Seasonal variations in oestradiol-17 beta and luteinizing hormone in the blood of buffalo cows (Bubalus bubalis). J. Endocrinol., 98(2): 251-255. DOI: 10.1677/joe.0.0980251
Rasmussen, L.E.L. 1998. Chemical communication: an integral part of functional Asian elephant (Elephas maximus) society. Ecoscience, 5(3): 411-429. DOI: 10.1080/11956860.1998.11682469
Ravinder, R., O.D. Kaipa, V. Simhabaddela, E. Sinha, P. Singh, Varijnayan, C.S.N. Velagala, R.K. Baithalu, S.K. Onteru and D. Singh. 2016. Saliva ferning, an unorthodox estrus detection method in water buffaloes (Bubalus bubalis). Theriogenology, 86(5): 1147-1155. DOI: 10.1016/j.theriogenology.2016.04.004
Razdan, M.N. and M.L. Kakkar. 1980. Summer sterility and endocrine profiles of buffaloes. Indian Dairyman., 32: 459-464.
Rekwot, P.I., D.E.O. Ogwu and V.O. Sekone. 2001. The role of pheromones and biostimulation in animal reproduction. Anim. Reprod. Sci., 65(4-4): 157-170. DOI: 10.1016/s0378-4320(00)00223-2
Rivard, G. and W. Klemm. 1989. Two body fluids containing bovine estrous pheromone(s). Chem. Senses, 14(2): 273-279. DOI: 10.1093/chemse/14.2.273
Richards, J.S. 1980. Maturation of ovarian follicles: actions and interactions of pituitary and ovarian hormones on follicular cell differentiation. Physiol. Rev., 60(1): 51-89. DOI: 10.1152/physrev.1980.60.1.51
Sane, C.R. 1994. A Textbook on Reproduction in Farm Animals (Theriogenology), 2nd ed. Varghese Publishing House, Bombay, India. 728p.
Selvam, R.M., S.K. Onteru, Varijnayan, M. Sivakumar, D. Singh and G. Archunan. 2017. Exploration of Luteinizing hormone in Murrah buffalo (Bubalus bubalis) urine: Extended surge window opens door for estrus prediction. Gen. Comp. Endocr., 251: 121-126. DOI: 10.1016/j.ygcen.2016.12.002
Selvam, R.M. and G. Archunan. 2017. A combinatorial model for effective estrus detection in Murrah buffalo. Vet. World, 10(2): 209-213. Available on: https://www.veterinaryworld.org/Vol.10/February-2017/11.pdf
Selvam, R.M., S.K. Onteru, V. Nayan, M. Sivakumar and D. Singh. 2017. Exploration of luteining hormone in Murrah buffalo (Bubalus bubalis) urine: Extended surge window opens door for estrus prediction. Gen. Comp. Endocr., 251: 1-6. DOI: 10.1016/j.ygcen.2016.12.002
Shashikumar, N.G., R.K. Baithalu, S. Bathla, S.A. Ali, A. Kumaresan, S. Kumar, B.R. Maharana, G. Singh, D.S.P. Kumar, S.K. Singh, S.S. Lathwal, L. Jaiswal, T.K. Mohanty and A.K. Mohanty. 2018. Global proteomic analysis of water buffalo (Bubalus bubalis) saliva at different stages of estrous cycle using high throughput mass spectrometry. Theriogenology, 110: 52-60. DOI: 10.1016/j.theriogenology.2017.12.046
Siddiky, M.D. and M.O Faruque. 2018. Buffaloes for dairying in South Asia: Potential, challenges and way forward. SAARC Journal of Agriculture, 15(2): 227-239. DOI: 10.3329/sja.v15i2.35167
Singh, J., A. Nanda and G. Adams. 2000. The reproductive pattern and efficiency of female buffaloes. Anim. Reprod. Sci., 60-61: 593-604. DOI: 10.1016/s0378-4320(00)00109-3
Singh, R. and A.S. Nanda. 1993. Environmental variables governing seasonality in buffalo breeding. J. Anim. Sci., 71: 119.
Sonna, L.A., J. Fujita, S.L. Gaffin and C.M. Lilly. 2002. Invited review: Effects of heat and cold stress on mammalian gene expression. J. Appl. Physio., 92(4): 1725-1742. DOI: 10.1152/japplphysiol.01143.2001
Souza, A.H., E.P.B. Silva, A.P. Cunha, A. Gumen, H. Ayres, D.J. Brusveen, J.N. Guenthen and M.C. Wiltbank. 2011. Ultrasonographic evaluation of endometrial thickness near timed AI as a predictor of fertility in high-producing dairy cows. Theriogenology, 75(4): 722-733. DOI: 10.1016/j.theriogenology.2010.10.013
Spicer, L.J., S. Sudo, P.Y. Aad, L.S. Wang, S.Y. Chun, I.B. Shlomo, C. Klein and A.J.W. Hsueh. 2009. The hedgehog-patched signaling pathway and function in the mammalian ovary: A novel role for hedgehog proteins in stimulating proliferation and steroidogenesis of theca cells. Reproduction, 138(2): 329-339. DOI: 10.1530/REP-08-0317
Srinivasan, M., S. Muthukumarb, G. Saibabaa, C. Manikkarajaa, M. Abdulkader, Akbarshac and G. Archunana. 2020. Salivary luteinizing hormone: An open window to detect oestrous period in buffalo. Reprod. Domest. Anim., 55(5): 647-651. DOI: 10.1111/rda.13649
Suh, C.S., B. Sonntag and G.F. Erickson. 2002. The ovarian life cycle: a contemporary view. Rev. Endocr. Metab. Dis., 3(1): 5-12. DOI: 10.1023/a:1012719316332
Suthar, V.S. and A.J. Dhami. 2010. Estrus detection methods in buffalo - A review. Vet. World, 3(2): 94-96. Available on: https://www.veterinaryworld.org/Vol.3/February/Estrus%20Detection%20Methods%20in%20Buffalo.pdf
Tedengren, M., B. Olsson, B. Bradley and L.Z. Zhou. 1999. Heavy metal uptake, physiological response and survival of the blue mussel (Mytilus edulis) from marine and brackish waters in relation to the induction of heat-shock protein 70. Hydrobiologia, 393: 261-269. DOI: 10.1023/A:1003583509218
Tirindelli, R., M. Dibattista, S. Pifferi and A. Menini. 2009. From pheromones to behavior. Physiol. Rev., 89(3): 921-956. DOI: 10.1152/physrev.00037.2008
Vadodaria, V.P., K. Janakiraman and N.C. Buch. 1978. Thyroid activity in relation to reproductive performance of Surti buffalo heifers (Bubalus bubalis)-protein bound iodine. Indian J. Exp. Biol. 16(9): 986-988.
Verma, K.K., S. Prasad, A. Kumaresan, T.K. Mohanty, S.S. Layek, T.K. Patbandha and S. Chand. 2014. Characterization of physico-chemical properties of cervical mucus in relation to parity and conception rate in Murrah buffaloes. Vet. World, 7(7): 467-471. Available on: https://www.veterinaryworld.org/Vol.7/July-2014/5.pdf
Virmani, V.M., R.K. Malik and P. Singh. 2016. Effect of gonadotropin releasing hormone (Gnrh) preparations on induction of estrus and fertility in buffaloes under field conditions in Haryana. Buffalo Bull., 35(1): 93-100. Available on: https://kukrdb.lib.ku.ac.th/journal/BuffaloBulletin/search_detail/result/331442
Williams, C.J. and G.F. Erickson. 2012. Endotext, Available on: www.endotext.orgXu, J., C.V. Bishop, M.S. Lawson, B.S. Park and F. Xu. 2016. Anti-Mullerian hormone promotes pre-antral follicle growth, but inhibits antral follicle maturation and dominant follicle selection in primates. Hum. Reprod., 31(7): 1522-1530. DOI: 10.1093/humrep/dew100
Yang. P. and S.K. Roy. 2004. Follicle stimulating hormone-induced DNA synthesis in the granulosa cells of hamster preantral follicles involves activation of cyclin-dependent kinase-4 rather than cyclin d2 synthesis. Biol. Reprod., 70(2): 509-517. DOI: 10.1095/biolreprod.103.023457
Yang, P. and S.K. Roy. 2006. Transforming growth factor B1 stimulated DNA synthesis in the granulosa cells of preantral follicles: Negative interaction with epidermal growth factor. Biol. Reprod., 75(1): 140-148. DOI: 10.1095/biolreprod.105.050294
Zeleznik, A.J. 2001. Follicle selection in primates: “many are called but few are chosen”. Biol. Reprod., 65: 655-659. DOI: 10.1095/biolreprod65.3.655

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Buffalo Bulletin

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.