Polymorphisms in the MTRN1A gene promoter in buffaloes in the Amazon

Main Article Content

Caio Santos Silva Ednaldo Silva Filho Maria Rosa Travassos da Rosa Costa Amanda de Sousa Matos Larissa Coelho Marques Rodrigo Lima Sales José Ribamar Felipe Marques


The work aimed genetically to characterize the Murrah, Mediterranean and mixed-breed populations based on polymorphisms in the melatonin 1A receptor gene promoter (MTRN1A) and associate the genotypes with milk production. The haplotype A (position -1511 T and -1482 presents ACAA) and haplotype B (position -1511 C and -1482 does not present ACAA) were found in all groups. The haplotype frequencies were in Murrah breed (A=0.66 and B=0.34), Mediterranean breed (A=0.73 and B=0.27), and mixed-breed (A=0.65 and B=0.35). The Murrah breed had the genotypes AA (0.44), AB (0.44) and BB (0.12), and the Mediterranean and mixed-breed buffaloes had the genotypes AA (0.52) and (0.46), AB (0.42) and (0.39), and BB (0.06) and (0.15), respectively. For the Murrah, Mediterranean, and mixed-breed buffaloes, respectively, the expected heterozygosity values were 0.45, 0.40, and 0.45, the inbreeding coefficients were 0.04, -0.03, and 0.18, and the Hardy-Weinberg probabilities were 0.92, 0.24, and 0.59, respectively. The genotypes evaluated did not have an effect on milk production; however, the single nucleotide polymorphisms (SNP) and the insertion/deletion polymorphism (INDEL) can be used in studies on genetic variability.


Download data is not yet available.

Article Details

How to Cite
SILVA, Caio Santos et al. Polymorphisms in the MTRN1A gene promoter in buffaloes in the Amazon. Buffalo Bulletin, [S.l.], v. 40, n. 2, p. 293-299, june 2021. ISSN 2539-5696. Available at: <https://kuojs.lib.ku.ac.th/index.php/BufBu/article/view/2936>. Date accessed: 28 sep. 2022.
Original Article


Araújo, K.B.S., A.H.N. Rangel, F.C.E. Fonseca, E.M. Aguiar, A.A. Simplício, L.P. Novaes and D.M.L. Júnior. 2012. Influence of the year and calving season on production, composition and mozzarella cheese yield of water buffalo in the State of Rio Grande Do Norte, Brazil. Ital. J. Anim. Sci., 11(16): 87-91. DOI: 10.4081/ijas.2012.e16
Barbosa, E.M., B.B. Souza, R.C. Guimarães, J.S.N. Azevedo, E.C. Gonçalves, H.F.L. Ribeiro, S.T. Rolim Filho and E. Silva Filho. 2016. Polymorphism in the melatonin receptor gene in buffalo populations of the Brazilian Amazon. Genet. Mol. Res., 15(2): 1-6. DOI: 10.4238/gmr.15027960
Barbosa, E.M., B.B. Souza, R.C. Guimarães, L.K.N. Silva, J.S. Azevedo, E.C. Gonçalves, H.F. Ribeiro, S.T. Rolim Filho and E. Silva Filho. 2017. Polymorphisms in the melatonin receptor gene promoter and their associations with fertility characteristics in buffalo herd in Eastern Amazon. Genet. Mol. Res., 16(2): 1-11. DOI: 10.4238/gmr16029610
Carcangiu, V., M.C. Mura, M. Pazzola, G.M. Vacca, M. Paludo, B. Marchi, C. Daga, S. Bua and S. Luridiana. 2011. Characterization of the Mediterranean Italian buffaloes melatonin receptor 1A (MTNR1A) gene and its association with reproductive seasonality. Theriogenology, 76(3): 419-426. DOI: 10.1016/j.theriogenology.2011.02.018
Dardente, H. 2007. Does a melatonin-dependent circadian oscillator in the Pars Tuberalis drive prolactin seasonal rhythmicity? J. Neuroendocrinol., 19(8): 657-666. DOI: 10.1111/j.1365-2826.2007.01564.x
Dubey, P.K., S. Goyal, S.K. Mishra, A.K. Yadav, P. Kathiravan, R. Arora, R. Malik and R.S. Kataria. 2015. Association analysis of polymorphism in thyroglobulin gene promoter with milk production traits in riverine buffalo (Bubalus bubalis). Meta Gene., 28(5): 157-161. DOI: 10.1016/j.mgene.2015.07.005
Dupré, S.M., D.W. Burt, R. Talbot, A. Downing, D. Mouzaki, D. Waddington, B. Malpaux, J.R. Davis, G.A. Lincoln and A.S. Loudon. 2008. Identification of melatonin-regulated genes in the ovine pituitary pars tuberalis, a target site for seasonal hormone control. Endocrinology, 149(11): 5527-5539. DOI: 10.1210/en.2008-0834
Gunwant, P., A.K. Pandey, A. Kumar, I. Singh, S. Kumar, J.B. Phogat, V. Kumar, C.S. Patil, P. Tomar, S. Kumar and A. Magotra. 2018. Polymorphism of melatonin receptor (MTNR1A) gene and its association with seasonal reproduction in water buffalo (Bubalus bubalis). Anim. Reprod. Sci., 199: 51-59. DOI: 10.1016/j.anireprosci.2018.10.006
IBGE, Brazilian Institute of Geography and Statistics. 2016. Produção da Pecuária Municipal, Brazilian Institute of Geography and Statistics, Rio de Janeiro, Brazil. 44: 1-51.
Kininis, M. and W.L. Kraus. 2008. A global view of transcriptional regulatory by nuclear receptors: Gene expression, factor localization, and DNA sequence analysis. Nuclear Receptor Signaling, 6: 1-11. DOI: 10.1621/nrs.06005.
Luridiana, S., M.C. Mura, M. Pazzola, M. Paludo, G. Cosso, M.L. Dettori, S. Bua, G.M. Vacca and V. Carcangiu. 2012. Association between melatonin receptor 1A (MTNR1A) gene polymorphism and the reproductive performance of Mediterranean Italian buffaloes. Reprod. Fertil. Develop., 24(7): 983-987. DOI: 10.1071/RD11297
Malpaux, B., A. Daveau, F. Maurice-Mandon, G. Duarte and P. Chemineau. 1998. Evidence that melatonin acts in the premammillary hypothalamic area to control reproduction in the ewe: Presence of binding sites and stimulation of luteinizing hormone secretion by in situ microimplant delivery. Endocrinology, 139(4): 1508-1516. DOI: 10.1210/endo.139.4.5879
Malpaux, B., M. Migaud, H. Tricoire and P. Chemineau. 2001. Biology of mammalian photoperiodism and the critical role of the pineal gland and melatonin. J. Biol. Rhythm., 16(4): 336-347. DOI: 10.1177/074873001129002051
Mcwilliam, H., W. Li, M. Uludag, S. Squizzato, Y.M. Park, N. Buso, A.P. Cowley and R. Lopez. 2013. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res., 41: 597-600. DOI: 10.1093/nar/gkt376
Miziara, M.N., T. Goldammer, N.B. Stafuzza, P. Ianella, R. Agarwala, A.A. Schaffer, J.S. Elliott, P.K. Riggs, J.E. Womack and M.E. Amaral. 2007. A radiation hybrid map of river buffalo (Bubalus bubalis) chromosome 1 (BBU1). Cytogenet Genome Res., 19(1-2): 100-104. DOI: 10.1159/000109625
Naserkheil, M., S.R. Miraie-Ashtiani, M. Sadeghi, A. Nejati-Javaremi, C.W. Park, K.S. Min and D. Lee. 2019. Exploring novel single nucleotide polymorphisms and haplotypes of the diacylglycerol O-acyltransferase 1 (DGAT1) gene and their effects on protein structure in Iranian buffalo. Genes Genom., 41(11): 1265-1271. DOI: 10.1007/s13258-019-00854-2
Peakall, R. and P.E. Smouse. 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research - An update. Bioinformatics, 28(19): 2537-2539. DOI: 10.1093/bioinformatics/bts460
Raymond, M. and F. Rousset. 1995. Genepop (Version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered., 86(3): 248-249. DOI: 10.1093/oxfordjournals.jhered.a111573
Regitano, L.C.A. and L.L. Coutinho. 2001. Biologia Molecular Aplicada à Produção Animal. Brasília: Embrapa Informação Tecnológica, Brasília, Brazil. p. 187-194.
Rosales, F.P and M.O. Batalha. 2013. Coordination of the chain of buffalo milk in São Paulo State (Brazil). Buffalo Bull., 32(Special. 2): 1200-1203. Available on: http://ibic.lib.ku.ac.th/e-Bulletin/IBBUSI201302221.pdf
SAS. 2004. SAS/STAT 9.0 User’s Guide. SAS Institute Inc., Cary, North Carolina, USA.
Zetouni, L., G.M. De Camargo, P.D. Da Silva Fonseca, D.F. Cardoso, F.M. Gil, N.A. Hurtado-Lugo, R.R. Aspilcueta-Borquis, M. Cervini and H. Tonhati. 2014. Polymorphisms in the MTRN1A gene and their effects on the productive and reproductive traits in buffaloes. Trop. Anim. Health Prod., 46(2): 337-340. DOI: 10.1007/s11250-013-0493-1