Acrylamide, a carcinogen in daily life

Main Article Content

Sawinee Krittaphol

Abstract

Acrylamide is a toxic substance that naturally forms during high-temperature cooking processes such as frying, grilling, roasting, baking, and toasting. Its precursors are asparagine and reducing sugars through the mechanism of maillard reaction, which are naturally present in various food ingredients, particularly in potato products and baked goods. The International agency for research on cancer (IARC) has classified acrylamide as a Group 2A carcinogen, indicating it is "probably carcinogenic to humans" Toxicity studies in laboratory rats revealed that acrylamide is neurotoxic, genotoxic, and carcinogenic component. As a result, many health organizations have raised awareness about the dangers of acrylamide among food manufacturers and educated the public on cooking and dietary practices that reduce acrylamide exposure. These efforts include the developing guidelines and establishing standard limits for acrylamide levels in various foods.

Downloads

Download data is not yet available.

Article Details

Section
Review Articles

References

ทะเบียนมะเร็งระดับโรงพยาบาล พ.ศ. 2565. กรุงเทพฯ: สถาบันมะเร็งแห่งชาติ กรมการแพทย์; 2022.

การปฏิบัติตนเพื่อการป้องกันการเกิดโรคมะเร็งสำหรับประชาชน. กรุงเทพฯ: สถาบันมะเร็งแห่งชาติ กรมการแพทย์; [ม.ป.ป].

จิตติมา เจริญพานิช. สารอะคริลาไมด์ที่แฝงมากับอาหารไทย. วารสารวิทยาศาสตร์มหาวิทยาลัยขอนแก่น. 2012;40(4):1059-1072.

Rüdiger Weisshaar. Acrylamide in heated potato products - analytics and formation routes. Eur J Lipid Sci Technol. 2004;106:786-792.

Deary IJ, Whiteman MC, Pattie A, Starr JM, Hayward C, Wright AF, Carothers A and Whalley LJ. Acrylamide from Maillard reaction products. Nature. 2002;418:449-450.

Krishnakumar T and Visvanathan R. Acrylamide in food products: a review. J Food Process Technol. 2014;5(7) DOI: 10.4172/2157-7110.1000344.

Branco ECK. A systematic literature review of acrylamide levels, adverse health effects, and reduction of formation in fried and baked potato products. Thesis. University of Minnesota Twin Cities for the degree of Master of Science. 2023.

ลัดดาวัลย์ โรจนพรรณทิพย์, พรรณทิพย์ ตียพันธ์, มยุรี อุรารุ่งโรจน์ และพนาวัลย์ กลึงกลางดอน. การประเมินความเสี่ยงของสารอะคริลาไมด์ในอาหารต่อคนไทย. วารสารวิชาการสาธารณสุข. 2554;20(1):36-47.

Komthong P, Suriyaphan O and Charoenpanich J. Determination of acrylamide in Thai-conventional snacks from Nong Mon market, Chonburi using GC-MS technique. Food Additives and Contaminants: Part B Surveillance. 2012;5(1):20-28.

Nematollahia A, Kamankesh M, Hosseini H, Ghasemi J, Hosseini-Esfahanie F, Mohammadi A. Investigation and determination of acrylamide in the main group of cereal products using advanced microextraction method coupled with gas chromatography-mass spectrometry. J Cereal Sci. 2019;87:157-164.

Espositoa F, Fasanoa E, Vivoa AD, Velottob S, Sarghinia F, Cirilloa T. Processing effects on acrylamide content in roasted coffee production. Food Chem. 2020;319:126550.

Rubayiza AB and Meurens M. Chemical discrimination of arabica and robusta coffees by fourier transform raman spectroscopy. J Agric Food Chem. 2005;53:4654-4659.

Bertuzzi T, Martinelli E, Mulazzi A and Rastelli S. Acrylamide determination during an industrial roasting process of coffee and the influence of asparagine and low molecular weight sugars. Food Chem. 2020;303:125372.

นภัทร พิลึกนา. ผลการทดสอบการปนเปื้อนของ สารอะคริลาไมด์ในกาแฟ. หน่วยงานประจำจังหวัดกรุงเทพมหานคร สภาองค์กรของผู้บริโภค. 2565.

Na Jom K, Jamnong P, Lertsiri S. Investigation of acrylamide in curries made from coconut milk. Food Chem Toxicol. 2008;46:119-124.

Konings EJM, Barrs AJ, Van Klaveren JD, Spanjer MC, Rensen PM, Hiemstra M, van Kooij JA, Peters PW. Acrylamide exposure from foods of the Dutch population and an assessment of the consequent risk. Food Chem Toxicol. 2003;41:1569-1576.

พนาวัลย์ กลึงกลางดอน และมยุรี อุรารุ่งโรจน์. ผลกระทบของอุณหภูมิและระยะเวลาในกระบวนให้ความร้อนต่อการเกิดและความคงตัวของอะคริลาไมด์ในพริกป่น. วารสารกรมวิทยาศาตร์การแพทย์.2017;59(4):216-225.

Kokabthong A and Vangnai K. Dietary to acrylamide exposure from instant noodles to Thai population. การประชุมทางวิชาการของมหาวิทยาลัยเกษตรศาสตร์ ครั้งที่ 60.2022.

Erkekoǧlu P and Baydar T. Toxicity of acrylamide and evaluation of its exposure in baby foods. Nutrition Research Reviews. 2010;23(2):323-333.

Matoso V, Bargi-Souza P, Ivanski F, Romano MA and Romano RM. Acrylamide: A review about its toxic effects in the light of developmental Origin of health and disease (DOHaD) concept. Food Chem. 2019;283:422-430.

Exon JH. A review of the toxicology of acrylamide. Journal of Toxicology and Environmental Health Part B: Critical Reviews. 2016;9(5):397-412.

Nagata C, Konishi K, Tamura T, Wada K, Tsuji M, Hayashi M, Takeda N and Yasuda K. Associations of acrylamide intake with circulating levels of sex hormones and prolactin in premenopausal Japanese women. Cancer Epidemiol Biomarkers Prev. 2015;24(1):249-254.

Chen JH and Chou CC. Acrylamide inhibits cellular differentiation of human neuroblastoma and glioblastoma cells. Food Chem Toxicol. 2015;82:27-35.

Beland FA, Olson GR, Mendoza MCB, Marques MM and Doerge DR. Carcinogenicity of glycidamide in B6C3F1 mice and F344/N rats from a two-year drinking water exposure. Food Chem Toxicol. 2015;86:104-115.

Kopańska M, Łagowska A, Kuduk B and Banaś-Ząbczyk A. Acrylamide neurotoxicity as a possible factor responsible for Inflammation in the cholinergic nervous system. Int J Mol Sci. 2022;23(4):1-13.

Hongwei S, Xiaoyue Y and Lee H. The effects of amino acids on removal of acrylamide in a model reaction system. Front Agric Food Tech. 2013;6(1):59-61.

Miśkiewicz K, Nebesny E, Rosicka-Kaczmarek J, Żyżelewicz D and Budryn G. The effects of baking conditions on acrylamide content in shortcrust cookies with added freeze-dried aqueous rosemary extract. J Food Sci Technol. 2018;55(10):4184-4196.

Torres JD, Dueik V, Carré D and Bouchon P. Effect of the addition of soluble dietary fiber and green tea polyphenols on acrylamide formation and in vitro starch digestibility in baked starchy matrices. Molecules. 2019;24(20):3674.

Seyedi S, Javanmarddakheli M, Shekarabi A, Shavandi M and Farhadi S. Reduction of acrylamide by orange waste extract phenolic compounds in potato chips. J Food Bioprocess Eng. 2021;4(1):75-81.

Yashwanth BS, Premachandran MS, Karkera PS and Murthy PS. Acrylamide in coffee: Strategies, research and future perspectives. Food Control. 2024;163:110484.

Anese M, Quarta B and Frias J. Modelling the effect of asparaginase in reducing acrylamide formation in biscuits. Food Chem. 2011;126(2):435-440.

Mahajan RV, Saran S, Kameswaran K, Kumar V and Saxena RK. Efficient production of L-asparaginase from Bacillus licheniformis with low-glutaminase activity: Optimization, scale up and acrylamide degradation studies. Bioresource Technology. 2012;125:11-16.

Sansano M. Effect of pretreatments and air-frying, a novel technology, on acrylamide generation in fried potatoes. J Food Sci. 2015;80(5): 1120-1128.

Antunes-Rohling A, Ciudad-Hidalgo S, Mir-Bel J, Raso J, Cebrián G and Álvarez I. Ultrasound as a pretreatment to reduce acrylamide formation in fried potatoes. Innov Food Sci Emerg Technol. 2018;49:158-169.

Anese M, Nicoli MC, Verardo G, Munari M, Mirolo G and Bortolomeazzi R. Effect of vacuum roasting on acrylamide formation and reduction in coffee beans. Food Chem. 2014;145:168-172.

Akkurt K and Mogol BAG. Mitigation of acrylamide in baked potato chips by vacuum baking and combined conventional and vacuum baking processes. Lwt. 2021;144:111211.

Genovese J, Tappi S, Luo W, Tylewicz U, Marzocchi S, Marziali S, Romani S, Ragni L and Rocculi P. Important factors to consider for acrylamide mitigation in potato crisps using pulsed electric fields. Innov Food Sci Emerg Technol. 2019;55:18-26.

Mulla MZ, Bharadwaj VR, Annapure US, Variyar PS, Sharma A and Singhal RS. Acrylamide content in fried chips prepared from irradiated and non-irradiated stored potatoes. Food Chem. 2011;127(4):1668-1672.

Abboudi M, Koudsi Y and Jouhara H. Combined effects of Gamma irradiation and blanching process on acrylamide content in fried potato Strips combined effects of Gamma irradiation and blanching process on acrylamide content in fried potato Strips. Int J Food Prop. 2016;19(7):1447-1454.

Will Garvin and Niraj Rath. Regulatory Update on Acrylamide—State, Federal, and International Oversight. Food and Drug Law Institute [อินเทอร์เน็ต]. ก.ย.-ต.ค 2017 [เข้าถึงเมื่อ 21 ก.พ. 2025]. เข้าถึงได้จาก: https://www.fdli.org/2017/10/regulatory-update-acrylamide-state-federal-international-oversight/

Food Compliance International. Singapore: MFDS publishes limits for acrylamide in foods. c2025 – [cited 2025 Mar 4]. Available from: https://foodcomplianceinternational.com/industry-insight/news/4987-mfds-publishes-limits-for-acrylamide-in-foods