โปรตีนแมลงกินได้: คุณสมบัติเชิงหน้าที่และการใช้ประโยชน์ในอาหาร
##plugins.themes.bootstrap3.article.main##
摘要
จำนวนประชากรโลกที่เพิ่มขึ้นสอดคล้องกับความต้องการโปรตีนที่เพิ่มมากขึ้น ประกอบกับวิกฤตทางธรรมชาติที่อาจจะทำให้แหล่งโปรตีนในปัจจุบันไม่เพียงพอต่อความต้องการโปรตีนในอนาคต ดังนั้นแมลงกินได้จึงเป็นอีกหนึ่งทางเลือกที่ช่วยตอบโจทย์ปัญหาความไม่มั่นคงทางอาหารในอนาคตได้ แต่อย่างไรก็ดีแมลงกินได้มีข้อจำกัดในเรื่องของรูปลักษณ์ที่ไม่น่ารับประทาน การแปรรูปแมลงกินได้ไม่ว่าจะเป็นการบดเป็นผง หรือการสกัดแยกเฉพาะโปรตีน เป็นวิธีการที่จะช่วยลดข้อจำกัดในการใช้แมลงกินได้ในอาหารลงได้ นอกจากนี้คุณสมบัติเชิงหน้าที่ของโปรตีนแมลงกินได้ยังส่งผลโดยตรงกับลักษณะปรากฏ รสชาติ เนื้อสัมผัส และการยอมรับของผู้บริโภคต่อผลิตภัณฑ์ที่มีการเติมแมลงกินได้อีกด้วย
##plugins.generic.usageStats.downloads##
##plugins.themes.bootstrap3.article.details##
参考
Rumpold BA, Schlüter OK. Nutritional composition and safety aspects of edible insects. Mol Nutr Food Res. 2013;57(5):802-23.
Psarianos M, Aghababaei F, Schlüter OK. Bioactive compounds in edible insects: Aspects of cultivation, processing and nutrition. Food Research International. 2025;203:115802.
Orkusz A. Edible insects versus meat-nutritional comparison: knowledge of their composition Is the key to good health. Nutrients. 2021;13(4).
Santiago LA, Queiroz LS, Tavares GM, Feyissa AH, Silva NFN, Casanova F. Edible insect proteins: how can they be a driver for food innovation? Curr Opin Food Sci. 2024;58:101195.
van Huis A. Edible insects are the future? The Proceedings of the Nutrition Society. 2016;75(3):294-305.
Huang W, Wang C, Chen Q, Chen F, Hu H, Li J, et al. Physicochemical, functional, and antioxidant properties of black soldier fly larvae protein. J Food Sci. 2024;89(1):259-75.
Tomotake H, Katagiri M, Yamato M. Silkworm Pupae (Bombyx mori) Are New Sources of High Quality Protein and Lipid. J Nutr Sci Vitaminol (Tokyo). 2010;56(6):446-8.
Gravel A, Doyen A. The use of edible insect proteins in food: Challenges and issues related to their functional properties. IFSET. 2020;59:102272.
Bußler S, Rumpold BA, Jander E, Rawel HM, Schlüter OK. Recovery and techno-functionality of flours and proteins from two edible insect species: Meal worm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon. 2016;2(12):e00218.
Zhao X, Vázquez-Gutiérrez JL, Johansson DP, Landberg R, Langton M. Yellow mealworm protein for food purposes - extraction and functional properties. PLOS ONE. 2016;11(2):e0147791.
Yang R, Zhao X, Kuang Z, Ye M, Luo G, Xiao G, et al. Optimization of antioxidant peptide production in the hydrolysis of silkworm (Bombyx mori L.) pupa protein using response surface methodology. J Food Agric Environ. 2013;11:952-6.
Purschke B, Brüggen H, Scheibelberger R, Jäger H. Effect of pre-treatment and drying method on physico-chemical properties and dry fractionation behaviour of mealworm larvae (Tenebrio molitor L.). Eur Food Res Technol. 2018;244(2):269-80.
Boye JI, Barbana C. Protein processing in food and bioproduct manufacturing and techniques for analysis. J Food Ind Bioprod Bioproc. 2012. p. 85-113.
Duong-Ly KC, Gabelli SB. Chapter Seven - Salting out of proteins using ammonium sulfate precipitation. In: Lorsch J, editor. Methods in Enzymology. 541: Academic Press; 2014. p. 85-94.
Azagoh C, Ducept F, Garcia R, Rakotozafy L, Cuvelier ME, Keller S, et al. Extraction and physicochemical characterization of Tenebrio molitor proteins. Food Res Int. 2016;88:24-31.
Francis F, Doyen V, Debaugnies F, Mazzucchelli G, Caparros R, Alabi T, et al. Limited cross reactivity among arginine kinase allergens from mealworm and cricket edible insects. Food Chem. 2019;276:714-8.
Strobl S, Gomis-Rüth F-X, Maskos K, Frank G, Huber R, Glockshuber R. The α-amylase from the yellow meal worm: complete primary structure, crystallization and preliminary X-ray analysis. FEBS Letters. 1997;409(1):109-14.
Melgar-Lalanne G, Hernández-Álvarez A-J, Salinas-Castro A. Edible insects processing: traditional and innovative technologies. Compr Rev Food Sci Food Saf. 2019;18(4):1166-91.
Kramer Ryan M, Shende Varad R, Motl N, Pace CN, Scholtz JM. Toward a molecular understanding of protein solubility: increased negative surface charge correlates with increased solubility. Biophys J. 2012;102(8):1907-15.
Gould J, Wolf B. Interfacial and emulsifying properties of mealworm protein at the oil/water interface. Food Hydrocoll. 2018;77:57-65.
Wouters AGB, Rombouts I, Fierens E, Brijs K, Delcour JA. Relevance of the functional properties of enzymatic plant protein hydrolysates in food systems. Compr Rev Food Sci Food Saf. 2016;15(4):786-800.
Sathe SK, Zaffran VD, Gupta S, Li T. Protein Solubilization. Journal of the American Oil Chemists' Society. 2018;95(8):883-901.
Sharif HR, Williams PA, Sharif MK, Abbas S, Majeed H, Masamba KG, et al. Current progress in the utilization of native and modified legume proteins as emulsifiers and encapsulants – A review. Food Hydrocoll. 2018;76:2-16.
Lam RSH, Nickerson MT. Food proteins: A review on their emulsifying properties using a structure–function approach. Food Chem. 2013;141(2):975-84.
Zielińska E, Karaś M, Baraniak B. Comparison of functional properties of edible insects and protein preparations thereof. LWT. 2018;91:168-74.
Liceaga-Gesualdo AM, Li-Chan ECY. Functional properties of fish protein hydrolysate from herring (Clupea harengus). J Food Sci. 1999;64(6):1000-4.
Ziegler GR, Foegeding EA. The Gelation Of proteins paper No. 8255 in the journal series of the Pennsylvania Agricultural Experiment Station. In: Kinsella JE, editor. Advances in Food and Nutrition Research. 34: Academic Press; 1990. p. 203-98.
Totosaus A, Montejano JG, Salazar JA, Guerrero I. A review of physical and chemical protein-gel induction. Int J Food Sci Technol. 2002;37(6):589-601.
Yi L, Lakemond CMM, Sagis LMC, Eisner-Schadler V, van Huis A, van Boekel MAJS. Extraction and characterisation of protein fractions from five insect species. Food Chem. 2013;141(4):3341-8.
Kim H-W, Setyabrata D, Lee YJ, Jones OG, Kim YHB. Pre-treated mealworm larvae and silkworm pupae as a novel protein ingredient in emulsion sausages. IFSET. 2016;38:116-23.
Scholliers J, Steen L, Fraeye I. Partial replacement of meat by superworm (Zophobas morio larvae) in cooked sausages: Effect of heating temperature and insect:Meat ratio on structure and physical stability. IFSET. 2020;66:102535.
Smetana S, Ashtari Larki N, Pernutz C, Franke K, Bindrich U, Toepfl S, et al. Structure design of insect-based meat analogs with high-moisture extrusion. J Food Eng. 2018;229:83-5.
Kim T-K, Yong HI, Chun HH, Lee M-A, Kim Y-B, Choi Y-S. Changes of amino acid composition and protein technical functionality of edible insects by extracting steps. J Asia-Pac Entomol. 2020;23(2):298-305.
Kim T-K, Yong HI, Cha JY, Park S-Y, Jung S, Choi Y-S. Drying-induced restructured jerky analog developed using a combination of edible insect protein and textured vegetable protein. Food Chem. 2022;373:131519.
Cho SY, Ryu GH. Effects of mealworm larva composition and selected process parameters on the physicochemical properties of extruded meat analog. J Food Sci Nutr. 2021;9(8):4408-19.
Azzollini D, Derossi A, Fogliano V, Lakemond CMM, Severini C. Effects of formulation and process conditions on microstructure, texture and digestibility of extruded insect-riched snacks. IFSET. 2018;45:344-53.
Cuj-Laines R, Hernández-Santos B, Reyes-Jaquez D, Delgado-Licon E, Juárez-Barrientos JM, Rodríguez-Miranda J. Physicochemical properties of ready-to-eat extruded nixtamalized maize-based snacks enriched with grasshopper. Int J Food Sci Technol. 2018;53(8):1889-95.
Osimani A, Milanović V, Cardinali F, Roncolini A, Garofalo C, Clementi F, et al. Bread enriched with cricket powder (Acheta domesticus): A technological, microbiological and nutritional evaluation. IFSET. 2018;48:150-63.
González CM, Garzón R, Rosell CM. Insects as ingredients for bakery goods. A comparison study of H. illucens, A. domestica and T. molitor flours. IFSET. 2019;51:205-10.
Haber M, Mishyna M, Martinez JJI, Benjamin O. The influence of grasshopper (Schistocerca gregaria) powder enrichment on bread nutritional and sensorial properties. LWT. 2019;115:108395.
Roncolini A, Milanović V, Cardinali F, Osimani A, Garofalo C, Sabbatini R, et al. Protein fortification with mealworm (Tenebrio molitor L.) powder: Effect on textural, microbiological, nutritional and sensory features of bread. PLOS ONE. 2019;14(2):e0211747.
da Rosa Machado C, Thys RCS. Cricket powder (Gryllus assimilis) as a new alternative protein source for gluten-free breads. IFSET. 2019;56:102180.
Gantner M, Król K, Piotrowska A, Sionek B, Sadowska A, Kulik K, et al. Adding mealworm (Tenebrio molitor L.) powder to wheat bread: effects on physicochemical, sensory and microbiological qualities of the end-product. Molecules. 2022;27(19):6155.
Acateca-Hernández MI, Hernández-Cázares AS, Hidalgo-Contreras JV, Jiménez-Munguía MT, Ríos-Corripio MA. Evaluation of the functional properties of a protein isolate from Arthrospira maxima and its application in a meat sausage. Heliyon. 2024;10(13):e33500.
Ochieng BO, Anyango JO, Khamis FM, Ekesi S, Egonyu JP, Subramanian S, et al. Nutritional characteristics, microbial loads and consumer acceptability of cookies enriched with insect (Ruspolia differens) meal. LWT. 2023;184:115012.