Comparison of morphological characteristics and maternal genetic lineages in Thai dwarf and swamp buffaloes (Bubalus B. carabanensis)

Authors

  • Taweeporn Raungprim Department of Animal Science, Faculty of Agriculture at Kampaeng Saen, Kasetsart University, Kampaeng Saen Campus, Nakhon Pathom, Thailand
  • Nachai Sarataphan Bureau of Biotechnology in Livestock Production, Department of Livestock Development, Pathum Thani, Thailand
  • Sutisa Majarune Department of Animal Science, Faculty of Agriculture at Kampaeng Saen, Kasetsart University, Kampaeng Saen Campus, Nakhon Pathom, Thailand
  • Sukanya Rattanatabtimtong Department of Animal Science, Faculty of Agriculture at Kampaeng Saen, Kasetsart University, Kampaeng Saen Campus, Nakhon Pathom, Thailand
  • Sukanya Yungrahang Bureau of Biotechnology in Livestock Production, Department of Livestock Development, Pathum Thani, Thailand
  • Wisut Maitreejet Department of Animal Science, Faculty of Agriculture at Kampaeng Saen, Kasetsart University, Kampaeng Saen Campus, Nakhon Pathom, Thailand

Keywords:

Bubalus bubalis, buffaloes, morphological characteristics, maternal lineages, Thai dwarf buffaloes, swamp buffaloes

Abstract

The objectives of this study was to compare morphological characteristics and to establish evolutionary relationship of 14 Thai dwarf buffaloes and 21 swamp buffaloes based on mitochondrial DNA (mtDNA) D-loop variations. Morphological characteristics could be constructed phylomorphologic tree and showed clearly classified between dwarf and swamp buffaloes. Most of morphologic traits were highly significant difference adult contest swamp buffaloes (P<0.01) from 9 contest swamp buffaloes. Only morphological traits of length between eye, length between base of horn, horn length and horn width were not significant difference (P>0.05). Average shoulder height of Thai dwarf buffaloes were 108.33±2.08 cm, whereas average shoulder height of contest swamp buffaloes were 156.78±4.21 cm. Thai dwarf buffaloes would be defined as disproportional dwarfism. Sequences of mtDNA D-loop (374 bp) of dwarf and normal swamp buffaloes with reference sequences showed 84 polymorphic sites and defined as 12 and 11 haplotypes, respectively. It was noticed that transversion in Thai dwarf buffaloes occurred twice time of normal swamp buffaloes. Phylogenetic tree showed 2 clades of water buffaloes. Swamp buffaloes were classified into lineage A and lineage B, in which lineage A was more predominant than lineage B. Median joining network showed 2 clades of river and swamp buffaloes. Swamp buffalo (SaenCP) in lineage A1 seem to be ancestral node of some Thai swamp buffaloes, Chinese swamp buffaloes and Philippines carabao. Most of dwarf swamp buffaloes were in lineage A2 and dwarf swamp buffalo with no horn, black color- coat was latter evolution.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Nachai Sarataphan, Bureau of Biotechnology in Livestock Production, Department of Livestock Development, Pathum Thani, Thailand

Bureau of Biotechnology in Livestock Production, Department of Livestock Development, Pathumthani, 12000

Sutisa Majarune, Department of Animal Science, Faculty of Agriculture at Kampaeng Saen, Kasetsart University, Kampaeng Saen Campus, Nakhon Pathom, Thailand

Department of Animal Science, Faculty of  Agriculture at KampaengSaen, Kasetsart  University, KampaengSaen Campus, Nakhon  Pathom 73140

Sukanya Rattanatabtimtong, Department of Animal Science, Faculty of Agriculture at Kampaeng Saen, Kasetsart University, Kampaeng Saen Campus, Nakhon Pathom, Thailand

Department of Animal Science, Faculty of  Agriculture at KampaengSaen, Kasetsart  University, KampaengSaen Campus, Nakhon  Pathom 73140

Sukanya Yungrahang, Bureau of Biotechnology in Livestock Production, Department of Livestock Development, Pathum Thani, Thailand

Department of Animal Science, Faculty of  Agriculture at KampaengSaen, Kasetsart  University, KampaengSaen Campus, Nakhon  Pathom 73140

Wisut Maitreejet, Department of Animal Science, Faculty of Agriculture at Kampaeng Saen, Kasetsart University, Kampaeng Saen Campus, Nakhon Pathom, Thailand

Department of Animal Science, Faculty of  Agriculture at KampaengSaen, Kasetsart  University, KampaengSaen Campus, Nakhon  Pathom 73140

References

Bandelt, H.J., P. Forster and A. Rohl. 1999. Median joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol., 16(1): 37-38. DOI: 10.1093/oxfordjournals.molbev.a026036
Cockrill, W.R. 1981. The Water buffalo: A review. Brit. Vet. J., 137(1): 8-16. DOI: 10.1016/S0007-1935(17)31782-7
Chen, S.Y., Y.H. Su, S.F. Wu, T. Sha and Y.P. Zhang. 2005. Mitochondrial diversity and phylogeographic structure of Chinese domestic goats. Mol. Phylogenet. Evol., 37(3): 804-814. DOI: 10.1016/j.ympev.2005.06.014
Del Barrio, L.A.M., C.B. dela Vina, C.A.S. Estrella, J.R.V. Herrera, A.N. del Barrio and M.G.N.Jr. Yebron. 2009. Molecular Characterization of the Philippine Carabao from the Major Island Groups of the Philippines Using Molecular Cloning and Sequence Analysis of the D-loop of Mitochondrial DNA. Institute of Biological Sciences, University of the Philippines Los Banos, Los Banos, Philippines.
Guo, J.L., X. Du, Y.H. Ma, W.J. Guan, H.B. Li, Q.J. Zhao, X. Li and S.Q. Rao. 2005. A novel maternal lineage revealed in sheep (Ovis ariees). Anim. Genet., 36(4): 331-336. DOI: 10.1111/j.1365-2052.2005.01310.x
Horton, W.A., J.G. Hall and J.T. Hecht. 2007. Achondroplasia. Lancet, 370(9582): 162-172. DOI: 10.1016/S0140-6736(07)61090-3
Huerta-Cepas, J., F. Serra and P. Bork. 2016. ETE3: Reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol., 33(6): 1635-1638. DOI: 10.1093/molbev/msw046
Hussain, T. M. Ellahi Babar, M. Imran, A. Nadeem, A. Ali and M.A. Jabbar. 2009. Genetic Characterization of Pakistani Buffalo Breeds by the Analysis of Mitochondrial D-loop Region. Available on: https:// www.ncbi.nlm.gov/nucleotide/GQ166748.
Kierstein, G., M. Vallinoto, A. Silva, M.P. Schneider, L. Iannuzzi and B. Brenig. 2004. Analysis of mitochondrial D-loop region casts new light on domestic Water buffalo (Bubalus bubalis) phylogeny. Mol. Phylogenet. Evol., 30(2): 308-324. DOI: 10.1016/s1055-7903(03)00221-5
Lai, S.J., Y.P. Liu, Y.X. Liu, X.W. Li and Y.G. Yao. 2006. Genetic diversity and origin of Chinese cattle revealed by mtDNA D-loop sequences variation. Mol. Phylogenet. Evol., 38(1): 146-154. DOI: 10.1016/j.ympev.2005.06.013
Lau, C.H., R.D. Drinkwater, K. Yusoff, S.G. Tan, D.J.S. Hetzel and J.S.F. Barker. 1998. Genetic diversity of Asian Water buffalo (Bubalus bubalis), mitochondrial DNA D-loop and cytochrome b sequence variation. Anim. Genet., 29(4): 253-264. DOI: 10.1046/j.1365-2052.1998.00309.x
Lei, C.Z., W. Zhang, H. Chen, F. Lu, Q.L. Ge, R.Y. Liu, R.H. Dang, Y.Y. Yao, L.B. Yao, Z.F. Lu and Z. Zhao. 2007. Two maternal lineages revealed by mitochondrial DNA D-loop sequences in Chinese native Water buffaloes (Bubalus bubalis). Asian Austral. J. Anim., 20(4): 471-476. Available on: animbiosci.org/upload/pdf/20-64.pdf
Liu, Z.G., C.Z. Lei, J. Luo, C. Ding, G.H. Chen, H. Chan, K.H. Wang, X.X. Liu, X.Y. Zhang, X.J. Xiao and S.L. Wu. 2004. Genetic variability of mtDNA sequences in Chinese native chicken breeds. Asian Austral. J. Anim., 17(7): 903-909. DOI: 10.5713/ajas.2004.903
Richard, S.M., G. Bailliet, G.L. Paez, M.S. Bianchi, P. Peltomaki and N.O. Bianchi. 2000. Nuclear and mitochondrial genome instability in human breast cancer. Cancer Res., 60(15): 4231-4237.
Mishra, B., J. Koltes, L. Totir, R. Fernando, J. Cavanagh, M. Georges, W. Coppieters, R. Cobbold, T. Aboellail, D. Steffen and J. Reecy. 2004. Mapping of the gene causing disproportionate dwarfism in Angus cattle. In Proceedings of the 29th International Conference on Animal Genetics, Tokyo, Japan.
Pauli, R.M., M.P. Adam, H.H. Ardinger, R.A. Pagon, S.E. Wallace, L.J.H. Bean, H.C. Mefford, K. Stephens, A. Amemiya and N. Ledbetter. 2012. Achondroplasia. Gene Reviews (Internet), University of Washington, Seattle, USA.
Qian, J.X., K.J. Dong, Y.J. Huang, B.Z. Yang, M. He, Z.J. Liu and J. Li. 2004. Complete Sequence of Bubalus bubalis Mitochondrial DNA. Available on: https://www.uniprot.org/uniprot/Q68GE0
Tamura, K., G. Stecher, D. Peterson, A. Fillipski and S. Kumar. 2013. Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 30(12): 2725-2729. DOI: 10.1093/mobev/mst197
Wallace, D.C. J.M. Shoffner, R.L. Watts, J.L. Juncos and A. Torroni. 1992. Mitochondrial oxidative phosphorylation defects in Parkinson”s disease. Ann. Neurol., 32(1): 113-114. DOI: 10.1002/ana.410320123
Wallace, D.C. 1992. Diseases of the mitochondrial DNA. Annu. Rev. Biochem., 61: 1175-1212. DOI: 10.1146/annurev.bi.61.070192.005523
Walsh, P.S., D.A. Metzger and R. Higushi. 2013. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques, 54(3): 134-139. Available on: https://www.future-science.com/doi/pdf/10.2144/000114018

Downloads

Published

2021-03-26

How to Cite

Raungprim, T., Sarataphan, N., Majarune, S., Rattanatabtimtong, S., Yungrahang, S., & Maitreejet, W. (2021). Comparison of morphological characteristics and maternal genetic lineages in Thai dwarf and swamp buffaloes (Bubalus B. carabanensis). Buffalo Bulletin, 40(1), 57–70. Retrieved from https://kuojs.lib.ku.ac.th/index.php/BufBu/article/view/3985

Issue

Section

Original Article

Most read articles by the same author(s)