กิจกรรมการยับยั้งแบคทีเรียและการต้านไบโอฟิล์มของแอคติโนแบคทีเรีย ที่แยกจากดินรอบรากพืชสมุนไพรบางชนิด Antibacterial Activities and Antibiofilm Formation of Actinobacteria Isolated from Rhizospheric Soils of Some Medicinal Plants

##plugins.themes.bootstrap3.article.main##

นลินทิพย์ ชื่นชูวงษ์
ฝน เสนารัตน์
จินตนาถ วงศ์ชวลิต
รัชนี มิ่งมา

บทคัดย่อ

           Actinobacteria are an important group of Gram-positive bacteria capable to produce secondary metabolite with biological activities and has been used as antimicrobial agents and including antibiofilm formation. Actinobacteria are commonly found in soil, water, plant tissue and plant rhizosphere.The aim of this research was to investigate the antibacterial activity and antibiofilm formation of actinobacteria isolated from rhizospheric soils of three medicinal plants including Andrographis paniculata, Cannabis sativa and Mitragyna speciosa against Bacillus cereus TISTR 687, Staphylococcus aureus ATCC 27853, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa. 40 actinobacteria isolates were recovered from rhizospheric soils of A. paniculata 17 isolates, M. speciosa 12 isolates and C. sativa 11 isolates. Out of these, 11 isolates were found to inhibit at least one tested bacteria. There were three isolates namely F17, KC11 and KT01 exhibited high potential of antimicrobial activity and were selected for antibiofilm formation test using the microtiter plate (MTP) assay. The results showed that the isolate KT01 exhibited the highest antibiofilm activity. Cell free supernatant of isolate KT01 inhibited biofilm formation of B. cereus TISTR 687, S. aureus ATCC 27853 E. coli ATCC 25922 and P. aeruginosa, accounting for 11.69 ± 0.06%, 19.32 ± 0.05%, 23.57± 0.37% and 87.46 ± 0.07%, respectively. Based on 16s rDNA gene analysis, the isolate KT01 (1,499 bp) was most closely related to Streptomyces griseoincarnatus LMG 19316T (100% similarity). This result demonstrated that actinobacteria, isolated from the rhizospheric soils of medicinal plants, are source of bioactive compounds to inhibit pathogenic bacteria and antibiofilm.


บทคัดย่อ


           แอคติโนแบคทีเรียเป็นแบคทีเรียแกรมบวกกลุ่มสำคัญที่สามารถผลิตสารเมทาบอไลต์ทุติยภูมิที่มีฤทธิ์ทางชีวภาพ และถูกนำมาใช้เป็นสารต้านจุลินทรีย์ แอคติโนแบคทีเรียสามารถพบได้ทั่วไปในดิน น้ำ เนื้อเยื่อพืชและในดิน รอบรากพืช งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษากิจกรรมการยับยั้งแบคทีเรียและการต้านไบโอฟิล์มของแอคติโนแบคทีเรียที่แยกจากดินรอบรากพืชสมุนไพร 3 ชนิด คือ ฟ้าทะลายโจร (Andrographis paniculata) กัญชา (Cannabis sativa) และกระท่อม (Mitragyna speciosa) ต่อการยับยั้งแบคทีเรียทดสอบ Bacillus cereus TISTR 687, Staphylococcus aureus ATCC 27853, Escherichia coli ATCC 25922 และ Pseudomonas aeruginosa แอคติโนแบคทีเรียทั้งหมด 40 ไอโซเลต แยกได้จากดินบริเวณรอบรากฟ้าทะลายโจร จำนวน 17 ไอโซเลต ดินบริเวณรอบรากกระท่อม จำนวน 12 ไอโซเลต และดินบริเวณรอบรากกัญชา จำนวน 11 ไอโซเลต ในจำนวนนี้มี 11 ไอโซเลต ยับยั้งแบคทีเรียทดสอบได้อย่างน้อย 1 ชนิด และมี 3 ไอโซเลต คือ KT01, KC11 และ F17 มีกิจกรรมการยับยั้งแบคทีเรียดีที่สุดและคัดเลือกมาทดสอบการยับยั้งการสร้างไบโอฟิล์มด้วยวิธี microtiter plate (MTP) assay ผลการศึกษาพบว่าไอโซเลต KT01 มีกิจกรรมยับยั้งการสร้างไบโอฟิล์มดีที่สุด น้ำเลี้ยงเชื้อปราศจากเซลล์ของไอโซเลต KT01 ยับยั้งการสร้างไบโอฟิล์มของ B. cereus TISTR 687, S. aureus ATCC 27853, E. coli ATCC 25922 และ P. aeruginosa ได้ 11.69 ± 0.06%, 19.32 ± 0.05%, 23.57± 0.37% และ 87.46 ± 0.07% ตามลำดับ จากการวิเคราะห์ลำดับนิวคลีโอไทด์ของยีน 16S rDNA ของไอโซเลต KT01 (1,499 คู่เบส) พบว่ามีความเหมือนกัน กับ Streptomyces griseoincarnatus LMG 19316T (100 เปอร์เซ็นต์) จากผลการศึกษานี้แสดงให้เห็นว่าแอคติโนแบคทีเรียที่แยกจากดินรอบรากพืชสมุนไพรเป็นแหล่งของสารออกฤทธิ์ทางชีวภาพที่มีฤทธิ์ยับยั้งแบคทีเรียสาเหตุโรคและยับยั้งการสร้างไบโอฟิล์มได้

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

##plugins.themes.bootstrap3.article.details##

บท
สาขาวิทยาศาสตร์ วิทยาศาสตร์สุขภาพและกีฬา (Science and Health Science & Sport)

เอกสารอ้างอิง

Arifiyanto, A., Surtiningsih, T., Ni'matuzahroh, Fatimah, Agustina, D. & Alami, N.H. (2020). Antimicrobial activity of biosurfactants produced by actinomycetes isolated from rhizosphere of Sidoarjo mud region. Biocatalysis and Agricultural Biotechnology, 24, 101513. doi: 10.1016/j.bcab.2020.101513.

Bérdy, J. (2005). Bioactive microbial metabolites. The Journal of Antibiotics, 58, 1–26. doi: 10.1038/ja.2005.1.

Bérdy, J. (2012). Thoughts and facts about antibiotics: Where we are now and where we are heading. The Journal of Antibiotics, 65, 385–395. doi: 10.1038/ja.2012.27.

Castronovo, L.M., Vassallo, A., Mengoni, A., Miceli, E., Bogani, P., Firenzuoli, F., Fani, R., & Maggini, V. (2021). Medicinal plants and their bacterial microbiota: a review on antimicrobial compounds production for plant and human health. Pathogens, 10(2), 106. doi: 10.3390/pathogens10020106.

Cowan, M.M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582.

David, L., Duteurtre, M., Kergomard, A., Kergomard, G., Scanzi, E. & Staron, T. (1980). Production of cinerubins by a Streptomyces griseorubiginosus strain. The Journal of Antibiotics, 33(1), 49–53.

Flemming, H.C. & Wingender, J. (2010). The biofilm matrix. Nature Review, 8, 623–633

Goel, N., Fatima, S. W., Kumar, S., Sinha, R. & Khare, S. K. (2021). Antimicrobial resistance in biofilms: Exploring marine actinobacteria as a potential source of antibiotics and biofilm inhibitors. Biotechnology Reports, 30, e00613. doi: 10.1016/j.btre.2021.e00613.

Intra, B., Mungsuntisuk, I., Nihira, T., Igarashi, Y. & Panbangred, W. (2011). Identification of actinomycetes from plant rhizospheric soils with inhibitory activity against Colletotrichum spp., the causative agent of anthracnose disease. BMC Research Notes, 4(98). doi: 10.1186/1756-0500-4-98.

Janatiningrum, I. & Lestari, Y. (2022). Enzyme production, antibacterial and antifungal activities of actinobacteria isolated

from Ficus deltoidea rhizosphere. Biodiversitas, 23(4), 1950–1957.

Jose, P.A., Maharshi, A. & Jha, B. (2021). Actinobacteria in natural products research: Progress and prospects. Microbiological Research, 246, 126708. doi: 10.1016/j.micres.2021.126708.

Kamarudheen, N. & Rao, K.V.B. (2019). Fatty acyl compounds from marine Streptomyces griseoincarnatus strain HK12 against two major bio-film forming nosocomial pathogens; an in vitro and in silico approach. Microbial pathogenesis, 127, 121–130.

Kanini, G.S., Katsifas, E.A., Savvides, A.L., & Karagouni, A.D. (2013). Streptomyces rochei ACTA1551, an indigenous Greek isolate studied as a potential biocontrol agent against Fusarium oxysporum f. sp. lycopersici. BioMed Research International, 2013, 387230. doi: 10.115

/2013/387230.

Kataoka, M., Ueda, K., Kudo, T., Seki, T. & Yoshida, T. (1997). Application of the variable region in 16S rDNA to create an index for rapid species identification in the genus Streptomyces. FEMS Microbiology Letters, 151(2), 249–255.

Khamna, S., Yokota, A. & Lumyong, S. (2009). Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World Journal of Microbiology and Biotechnology, 25, 649–655.

Kolarević, S., Milovanović, D., Avdović, M., Oalđe, M., Kostić, J., Sunjog, K., Nikolić, B., Knežević-Vukčević, J. & Vuković-Gačić, B. (2016). Optimization of the microdilution method for detection of minimum inhibitory concentration values in selected bacteria. Botanica Serbica, 1(140), 29–36.

Kumari, N., Menghani, E. & Mithal, R. (2019). Bioactive compounds characterization and antibacterial potentials of actinomycetes isolated from rhizosphere soil. Journal of Scientific and Industrial Research, 78, 793–798.

Küster, E. & Williams, S.T. (1964). Selection of media for isolation of Streptomycetes. Nature, 202, 928–929.

Leetanasaksakul, K. & Thamchaipenet, A. (2018). Potential anti-biofilm producing marine actinomycetes isolated from sea sediments in Thailand. Agriculture and Natural Resources, 52, 228–233.

Li, F., Liu, S., Lu, Q., Zheng, H., Osterman, I. A., Lukyanov, D. A., Sergiev, P. V., Dontsova, O. A., Liu, S., Ye, J., Huang, D., & Sun, C. (2019). Studies on antibacterial activity and diversity of cultivable actinobacteria isolated from mangrove soil in Futian and Maoweihai of China. Evidence-Based Complementary and Alternative Medicine, 2019, 3476567. doi: 10.1155/2019/3476567.

Li, N., Xu, D., Huang, R.-H., Zheng, J.-Y., Liu, Y.-Y., Hu, B.-S., Gu, Y.-Q. & Du, Q. (2022). A new source of diterpene lactones from Andrographis paniculata (Burm. f.) nees-Two endophytic fungi of Colletotrichum sp. with antibacterial and antioxidant activities. Frontiers in Microbiology, 13, 819770. doi: 10.3389/fmicb.2022.819770.

Limoli, D.H., Jones, C.J. & Wozniak, D.J. (2015). Bacterial extracellular polysaccharides in biofilm formation and function. Microbiology Spectrum, 3(3). doi: 10.1128/microbiolspec.MB-0011-2014.

Michaelis, C. & Grohmann, E. (2023). Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics, 12(2), 328. doi: 10.3390/antibiotics12020328.

Miller, T., Waturangi, D.E. & Yogiara. (2022). Antibiofilm properties of bioactive compounds from Actinomycetes against foodborne and fish pathogens. Scientific Reports, 12, 18614. doi:10.1038/s41598-022-23455-8.

Nikaido, H. (1989). Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrobial agents and chemotherapy, 33(11), 1831–1836.

Nirwati, H., Damayanti, E., Sholikhah, E.N., Mutofa, M. & Widada, J. (2022). Soil-derived Streptomyces sp. GMR22 producing antibiofilm activity against Candida albicans: Bioassay, untargeted LC-HRMS, and gene cluster analysis. Heliyon, 8(4), e09333. doi: 10.1016/j.heliyon.2022.e09333.

O'Toole, G.A. (2011). Microtiter dish biofilm formation assay. Journal of Visualized Experiments, 30(47), 2437. doi: 10.3791/

Park, J.-H., Lee, J.-H., Kim, C.-J., Lee, J.C., Cho, M.H. & Lee, J. (2012). Extracellular protease in Actinomycetes culture supernatants inhibits and detaches Staphylococcus aureus biofilm formation. Biotechnology letters, 34, 655–661.

Prawatviteesuk, A., Supan, W., Sombood, P., Vorasanon, K. & Vichitvejpaisal, P. (2022). Cannabis, Kratom and Kariyat: issues of concern in perianesthetic care. Siriraj Medical Bulletin, 15(4), 266–274.

Pusparajah, P., Letchumanan, V., Law, J.W.-F., Ab Mutalib, N. S., Ong, Y.-S., Goh, B.-H., Tan, L.T.-H & Lee, L.-H. (2021). Streptomyces sp.-A treasure trove of weapons to combat methicillin-resistant Staphylococcus aureus biofilm associated with biomedical devices. International journal of molecular sciences, 22(17), 9360. doi: 10.3390/ijms22179360.

Rakphet, K., Vasapong, S. & Thanusin, W. (2022). The cultivation, traditional uses and pharmacological activities of “Fah talai jone” (Andrographis paniculata): A medicinal plant in Thai and Chinese traditional medicine. Thailand Journal of Traditional Chinese Medicine, 1(1), 136–148.

Rizvi, A., Ahmed, B., Khan, M.S., El-Beltagi, H.S., Umar, S. & Lee, J. (2022). Bioprospecting plant growth promoting rhizobacteria for enhancing the biological properties and phytochemical composition of medicinally important crops. Molecules, 27(4), 1407. doi: 10.3390/molecules27041407.

Rosenfeld, Y. & Shai, Y. (2006). Lipopolysaccharide (endotoxin)-Host defense antibacterial peptides interactions: Role in bacterial resistance and prevention of sepsis. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1758(9): 1513–1522.

Shirling, E. B. & Gottlieb, D. (1966). Method for characterization of Streptomyces species. International Journal of Bacteriology, 16, 313–340.

Singh, S., Datta, S., Narayanan, K.B. & Rajnish, K.N. (2021). Bacterial exo-polysaccharides in biofilms: Role in antimicrobial resistance and treatments. Journal of Genetic Engineering and Biotechnology, 19(1), 1–19.

Také, A., Matsumoto, A., Õmura, S. & Takahashi, Y. (2015). Streptomyces lactacystinicus sp. nov. and Streptomyces cyslabdanicus sp. nov., producing lactacystin and cyslabdan, respectively. The Journal of Antibiotics, 68, 322–327.

Tamura, K., Stecher, G. & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11, Molecular Biology and Evolution, 38(7), 3022–3027.

Vaghela, N. & Gohel, S. (2023). Medicinal plant-associated rhizobacteria enhance the production of pharmaceutically important bioactive compounds under abiotic stress conditions. Journal of Basic Microbiology, 63, 308–325.

Verderosa, A.D., Totsika, M. & Fairfull-Smith, K.E. (2019). Bacterial biofilm eradication agents: A current review. Frontiers in chemistry, 7, 824. doi: 10.3389/fchem.2019.00824.

Wang, Y., Jiao, P., Guo, W., Du, D., Hu, Y., Tan, X. & Liu, X. (2022). Changes in bulk and rhizosphere soil microbial diversity and composition along an age gradient of Chinese fir (Cunninghamia lanceolate) plantations in subtropical China. Frontiers in Microbiology, 12, 777862. doi: 10.3389/fmicb.2021.777862.

Williams, S.T., Goodfellow, M., Wellington, E.M.H., Vickers, J.C., Alderson, G., Sneath, P. H. A., Sackin, M.J. & Mortimer, A.M. (1983). A probability matrix for identification of some streptomycetes. Microbiology, 129(6), 1815–1830.

Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H. & Chun, J. (2017). Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67(5), 1613–1617.

You, J., Xue, X., Cao, L., Lu, X., Wang, J., Zhang, L. & Zhou, S. (2007). Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66. Applied microbiology and biotechnology, 76, 1137–1144.