ผลของสาหร่ายสไปรูลิน่าต่อการเพาะเลี้ยงแบคทีเรียแล็กติก Influence of Spirulina on lactic acid bacteria cultivation

Main Article Content

วนิดา ปานอุทัย
กฤติน จุลนารา
จุฑามาศ อินคล้าย
จุฑาทิพย์ รวดเร็ว
ณัฐวดี แก้วเกลื่อน

Abstract

Spirulina platensis is produced commercially as a food source, and is considered safe for human consumption. It has attractively increasing interest due to its high protein content, essential amino acids, fatty acids, and pigments. Here, the potential of Spirulina platensis IFRPD 1182 biomass as a substrate for cultivation of lactic acid bacteria was evaluated. Lactobacillus rhamnosus ATCC 53103 growth was supported by Spirulina biomass during fermentation. The increasing of S. platensis biomass could increase C-phycocyanin and total phenolic contents including antioxidant properties which could be developed as bioproducts. The results showed a guideline for applying Spirulina as a substrate with other nutrient sources that could support the growth of lactic acid bacteria and lactic acid production.


Keywords : Spirulina, lactic acid bacteria, fermentation, bioproducts


บทคัดย่อ


สาหร่ายสไปรูลิน่าเป็นแหล่งอาหารที่มีการผลิตในเชิงพาณิชย์และถูกจัดเป็นอาหารที่มีความปลอดภัยสำหรับการบริโภคของมนุษย์ สาหร่ายสไปรูลิน่าได้รับความสนใจอย่างมาก เนื่องจากมีปริมาณโปรตีนสูง กรดอะมิโนจำเป็น กรดไขมัน และสารรงควัตถุที่สำคัญ งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาการประยุกต์ใช้
ชีวมวลสาหร่ายสไปรูลิน่า Spirulina platensis IFRPD 1182 เป็นซับสเตรต (substrate) ในการเพาะเลี้ยงแบคทีเรียแล็กติก Lactobacillus rhamnosus ATCC 53103 พบว่า สาหร่ายสไปรูลิน่าสามารถส่งเสริมการเจริญเติบโตของแบคทีเรียแล็กติกได้ โดยการเพิ่มความเข้มข้นของสาหร่ายสไปรูลิน่าส่งผลให้มีปริมาณสารสำคัญไฟโคไซยานิน ปริมาณฟีนอลิกทั้งหมด และคุณสมบัติต้านอนุมูลอิสระมากขึ้น สามารถพัฒนาเป็นชีวผลิตภัณฑ์เพื่อเพิ่มมูลค่าได้ นอกจากนี้ยังเป็นแนวทางในการประยุกต์ใช้สาหร่ายสไปรูลิน่าเป็นซับสเตรตร่วมกับสารอาหารอื่น เพื่อสนับสนุนการเจริญเติบโตของแบคทีเรียแล็กติกและเพิ่มผลผลิตกรดแล็กติกต่อไปได้


คำสำคัญ : สาหร่ายสไปรูลิน่า แบคทีเรียแล็กติก กระบวนการหมัก ชีวผลิตภัณฑ์

Downloads

Download data is not yet available.

Article Details

Section
บทความวิจัย (Research Articles)

References

de la Jara A, Ruano-Rodriguez C, Polifrone M, Assunçao P, Brito-Casillas Y, Wägner AM, Serra-Majem L. Impact of dietary Arthrospira (Spirulina) biomass consumption on human health: main health targets and systematic review. Journal of Applied Phycology. 2018;30(4):2403-23.

Furmaniak MA, Misztak AE, Franczuk MD, Wilmotte A, Waleron M, Waleron KF. Edible Cyanobacterial Genus Arthrospira: Actual State of the Art in Cultivation Methods, Genetics, and Application in Medicine. Frontiers in Microbiology. 2017;8.

Ferreira A, Guerra I, Costa M, Silva J, Gouveia L. Chapter 15 - Future perspectives of microalgae in the food industry. In: Lafarga T, Acién G, editors. Cultured Microalgae for the Food Industry: Academic Press; 2021. p. 387-433.

Jha D, Jain V, Sharma B, Kant A, Garlapati VK. Microalgae-based Pharmaceuticals and Nutraceuticals: An Emerging Field with Immense Market Potential. ChemBioEng Reviews. 2017;4(4):257-72.

Mehariya S, Goswami RK, Karthikeysan OP, Verma P. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere. 2021;280:130553.

Khavari F, Saidijam M, Taheri M, Nouri F. Microalgae: therapeutic potentials and applications. Molecular biology reports. 2021;48(5):4757-65.

Yarkent Ç, Gürlek C, Oncel SS. Potential of microalgal compounds in trending natural cosmetics: A review. Sustainable Chemistry and Pharmacy. 2020;17:100304.

González-González LM, Correa DF, Ryan S, Jensen PD, Pratt S, Schenk PM. Integrated biodiesel and biogas production from microalgae: Towards a sustainable closed loop through nutrient recycling. Renewable and Sustainable Energy Reviews. 2018;82:1137-48.

de Souza DS, Valadão RC, de Souza ERP, Barbosa MIMJ, de Mendonça HV. Enhanced Arthrospira platensis Biomass Production Combined with Anaerobic Cattle Wastewater Bioremediation. BioEnergy Research. 2022;15(1):412-25.

Mostafa SS, El-Gendy NS. Evaluation of fuel properties for microalgae Spirulina platensis bio-diesel and its blends with Egyptian petro-diesel. Arabian journal of chemistry. 2017;10:S2040-S50.

Raja R, Hemaiswarya S, Ganesan V, Carvalho IS. Recent developments in therapeutic applications of Cyanobacteria. Critical reviews in microbiology. 2016;42(3):394-405.

Chng LM, Chan DJC, Lee KT. Sustainable production of bioethanol using lipid-extracted biomass from Scenedesmus dimorphus. Journal of Cleaner Production. 2016;130:68-73.

Christaki E, Florou-Paneri P, Bonos E. Microalgae: a novel ingredient in nutrition. International journal of food sciences and nutrition. 2011;62(8):794-9.

Nicoletti M. Microalgae nutraceuticals. Foods. 2016;5(3):54.

de Marco Castro E, Shannon E, Abu-Ghannam N. Effect of Fermentation on Enhancing the Nutraceutical Properties of Arthrospira platensis (Spirulina). Fermentation. 2019;5(1):28.

Thompson HO, Önning G, Holmgren K, Strandler H, Hultberg M. Fermentation of cauliflower and white beans with Lactobacillus plantarum–impact on levels of riboflavin, folate, vitamin B12, and amino acid composition. Plant Foods for Human Nutrition. 2020;75(2):236-42.

Eş I, Khaneghah AM, Barba FJ, Saraiva JA, Sant'Ana AS, Hashemi SMB. Recent advancements in lactic acid production-a review. Food Research International. 2018;107:763-70.

Raj T, Chandrasekhar K, Kumar AN, Kim S-H. Recent biotechnological trends in lactic acid bacterial fermentation for food processing industries. Systems Microbiology and Biomanufacturing. 2022;2(1):14-40.

Jiang X, Liu X, Xu H, Sun Y, Zhang Y, Wang Y. Improvement of the nutritional, antioxidant and bioavailability properties of corn gluten-wheat bran mixture fermented with lactic acid bacteria and acid protease. LWT. 2021;144:111161.

Gupta S, Abu-Ghannam N. Bioactive potential and possible health effects of edible brown seaweeds. Trends in Food Science & Technology. 2011;22(6):315-26.

Uchida M, Miyoshi T. Algal fermentation—The seed for a new fermentation industry of foods and related products. Japan Agricultural Research Quarterly: JARQ. 2013;47(1):53-63.

Niccolai A, Shannon E, Abu-Ghannam N, Biondi N, Rodolfi L, Tredici MR. Lactic acid fermentation of Arthrospira platensis (spirulina) biomass for probiotic-based products. Journal of Applied Phycology. 2019;31(2):1077-83.

Chen PT, Hong ZS, Cheng CL, Ng IS, Lo YC, Nagarajan D, Chang JS. Exploring fermentation strategies for enhanced lactic acid production with polyvinyl alcohol-immobilized Lactobacillus plantarum 23using microalgae as feedstock. Bioresour Technol. 2020;308:123266.

Ścieszka S, Klewicka E. Influence of the Microalga Chlorella vulgaris on the Growth and Metabolic Activity of Lactobacillus spp. Bacteria. Foods (Basel, Switzerland). 2020;9(7):959.

Niccolai A, Bažec K, Rodolfi L, Biondi N, Zlatić E, Jamnik P, Tredici MR. Lactic Acid Fermentation of Arthrospira platensis (Spirulina) in a Vegetal Soybean Drink for Developing New Functional Lactose-Free Beverages. Frontiers in Microbiology. 2020;11.

Mokoena MP. Lactic Acid Bacteria and Their Bacteriocins: Classification, Biosynthesis and Applications against Uropathogens: A Mini-Review. Molecules. 2017;22(8):1255.

Abbasiliasi S, Tan JS, Tengku Ibrahim TA, Bashokouh F, Ramakrishnan NR, Mustafa S, Ariff AB. Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: a review. RSC Advances. 2017;7(47):29395-420.

Pan-utai W, Poopat N, Parakulsuksatid P. Photoautotrophic Cultivation of Arthrospira maxima for Protein Accumulation under Minimum Nutrient Availability. Applied Food Biotechnology. 2020;7(4):225-34.

Pan-utai W, Iamtham S, Boonbumrung S, Mookdasanit J. Improvement in the Sequential Extraction of Phycobiliproteins from Arthrospira platensis Using Green Technologies. Life. 2022;12(11):1896.

Pan-utai W, Pantoa T, Roytrakul S, Praiboon J, Kosawatpat P, Tamtin M, Thongdang B. Ultrasonic-Assisted Extraction and Antioxidant Potential of Valuable Protein from Ulva rigida Macroalgae. Life. 2023;13(1):86.

Pan-utai W, Thitiprasert S, Pornpukdeewattana S. Arthrospira Cell Residues for Lactic Acid Fermentation as Bioproducts From Waste Utilization. Frontiers in Energy Research. 2022;10.

Dębowski M, Kisielewska M, Kazimierowicz J, Rudnicka A, Dudek M, Romanowska-Duda Z, Zielinski M. The effects of Microalgae Biomass Co-Substrate on Biogas Production from the Common Agricultural Biogas Plants Feedstock. Energies. 2020;13(9):2186.

Martelli F, Cirlini M, Lazzi C, Neviani E, Bernini V. Solid-State Fermentation of Arthrospira platensis to Implement New Food Products: Evaluation of Stabilization Treatments and Bacterial Growth on the Volatile Fraction. Foods. 2021;10(1):67.

Olszewska-Widdrat A, Alexandri M, López-Gómez JP, Schneider R, Venus J. Batch and Continuous Lactic Acid Fermentation Based on A Multi-Substrate Approach. Microorganisms. 2020;8(7):1084.

Liu Q, Yao C, Sun Y, Chen W, Tan H, Cao X, Xue S, Yin H. Production and structural characterization of a new type of polysaccharide from nitrogen-limited Arthrospira platensis cultivated in outdoor industrial-scale open raceway ponds. Biotechnology for Biofuels. 2019;12(1):131.

Meng Y, Xue Y, Yu B, Gao C, Ma Y. Efficient production of L-lactic acid with high optical purity by alkaliphilic Bacillus sp. WL-S20. Bioresour Technol. 2012;116:334-9.

Ma K, Maeda T, You H, Shirai Y. Open fermentative production of l-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient. Bioresource Technology. 2014;151:28-35.

Bintsis T. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiol. 2018;4(4):665-84.

Abedi E, Hashemi SMB. Lactic acid production – producing microorganisms and substrates sources-state of art. Heliyon. 2020;6(10):e04974.

Mendes Ferreira A, Mendes-Faia A. The Role of Yeasts and Lactic Acid Bacteria on the Metabolism of Organic Acids during Winemaking. Foods. 2020;9(9).

Yu J, Ma D, Qu S, Liu Y, Xia H, Bian F, Zhang Y, Huang C, Wu R, Wu J, You S, Bi Y. Effects of different probiotic combinations on the components and bioactivity of Spirulina. J Basic Microbiol. 2020;60(6):543-57.