ประโยชน์เชิงหน้าที่ของโปรตีนและคาร์โบไฮเดรตจากสาหร่าย Functional benefits from algal proteins and carbohydrates
Main Article Content
Abstract
Algae are widely found in natural habitats, especially in aquatic environments. They can be used as food ingredients and can be seen on many people’s favorite menus. Recently, algae have been the object of increasing interest as a healthy food ingredient. Since they provide various types of nutrients such as proteins, carbohydrates, fatty acids, dietary fiber, minerals, vitamins, and bioactive compounds, which offer several health benefits. Previous studies have illustrated that substances from algae exhibit numerous biological activities for example, antioxidant activity, anti-inflammatory, high prebiotic content, blood sugar level regulation, etc. Furthermore, previous research has revealed the mechanism of algal bioactive compounds that can reduce, inhibit, or prevent a variety of diseases. These beneficial properties of algae make them a very attractive potential source of nutrients for functional food.
Keywords : carbohydrates, proteins, bioactive compounds, health
บทคัดย่อ
สาหร่ายเป็นสิ่งมีชีวิตที่พบได้ทั่วไปในธรรมชาติ นอกจากจะเป็นส่วนผสมในเมนูโปรดของใครหลายคนแล้ว สาหร่ายยังเต็มไปด้วยสารอาหารที่มีประโยชน์ต่อร่างกาย การศึกษาเกี่ยวกับการใช้สาหร่ายเป็นอาหารเพื่อสุขภาพได้รับความสนใจเพิ่มขึ้น เนื่องจากพบว่า สาหร่ายประกอบไปด้วยสารอาหารที่มีคุณค่าทางโภชนาการ เช่น โปรตีน คาร์โบไฮเดรต กรดไขมัน ไฟเบอร์ แร่ธาตุ และวิตามินชนิดต่าง ๆ อีกทั้งเป็นแหล่งของสารออกฤทธิ์ทางชีวภาพด้วย งานวิจัยที่ผ่านมาแสดงให้เห็นว่า สารสำคัญในสาหร่ายมีกลไกการออกฤทธิ์ช่วยลด ยับยั้ง หรือป้องกันโรคได้ ฤทธิ์ทางชีวภาพที่พบได้ในสาหร่าย เช่น การต้านอนุมูลอิสระ ความสามารถลดการอักเสบในระดับเซลล์ ปริมาณใยอาหารสูงจึงเป็นแหล่งอาหารหรือพรีไบโอติกแก่แบคทีเรียชนิดดีในลำไส้ สาหร่ายมีส่วนช่วยควบคุมระดับน้ำตาลในเลือดและระดับอินซูลิน นอกจากนี้ยังมีฤทธิ์อื่น ๆ ที่ส่งผลดีต่อระบบต่าง ๆ ของร่างกาย ทำให้สาหร่ายได้รับความสนใจเพื่อใช้เป็นแหล่งของสารสำคัญในอาหารเชิงหน้าที่
คำสำคัญ : คาร์โบไฮเดรต โปรตีน สารออกฤทธิ์ทางชีวภาพ สุขภาพ
Downloads
Article Details
References
2. Brien RO, Hayes M, Sheldrake G, Tiwari B, Walsh P. Macroalgal Proteins: A Review. Foods. 2022;11(4),571:1-38.
3. Manivasagan P, Kim SK. An Overview of Harmful Algal Blooms on Marine Organisms. In: Handbook of Marine Microalgae: Biotechnology Advance, Academic Press, MA, USA., 2015.
4. Khavari F, Saidijam M, Taheri M, Nouri F. Microalgae: therapeutic potentials and applications. Mol Biol Rep. 2021;48(5):4757-4765.
5. Yarkent Ç, Gürlek C, Oncel SS. Potential of microalgal compounds in trending natural cosmetics: a review. Sustain Chem Pharm. 2020;17:100304.
6. Matos J, Cardoso C, Bandarra NM, Afonso C. Microalgae as healthy ingredients for functional food: a review. Food Funct. 2017;8(8):2672-2685.
7. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, et al. Algae as nutritional and functional food sources: revisiting our understanding. J Appl Psychol. 2019;29(2):949-982.
8. Dillehay TD, Ramírez C, Pino M, Collins MB, Rossen J, Pino-Navarro JD. Monte Verde: Seaweed, food, medicine, and the peopling of South America. Science. 2008;320(5877):784-786.
9. ยุวดี พีรพรพิศาล. ศักยภาพของสาหร่ายน้ำจืดขนาดใหญ่ในการเป็นผลิตภัณฑ์เสริมอาหารและเวชสำอาง. สำนักงานคณะกรรมการวิจัยแห่งชาติ; 2552.
10. พเยีย ตียาพันธ์. สาหร่ายน้ำ เทา [อินเตอร์เน็ต]. 2561 [เข้าถึงเมื่อ 9 พ.ย. 2565]. โครงการอนุรักษ์พันธุกรรมพืชอันเนื่องมาจากพระราชดำริฯ. 2561. เข้าถึงได้จาก: https://oer.learn.in.th/search_detail/result/103881
11. Mantri VA, Kavale MG, Kazi MA. Seaweed biodiversity of India: Reviewing current knowledge to identify gaps, challenges, and opportunities. Diversity. 2020;12(1),13:1-22.
12. Cotas J, Leandro A, Pacheco D, Gonçalves AMM, Pereira L. A comprehensive review of the nutraceutical and therapeutic applications of red seaweeds (Rhodophyta). Life. 2020;10(3),19:1-23.
13. Luthuli S, Wu S, Cheng Y, Zheng X, Wu M, Tong H. Therapeutic effects of fucoidan: A review on recent studies. Mar Drugs. 2019;17(9),487:1-15.
14. Nutautaitė M, Racevičiūtė-Stupelienė A, Bliznikas S, Jonuškienė I, Karosienė J, Koreivienė J, et al. Evaluation of Phenolic Compounds and Pigments in Freshwater Cladophora glomerata Biomass from Various Lithuanian Rivers as a Potential Future Raw Material for Biotechnology. Water. 2022;14(7):1-18.
15. Fitzgerald C, Aluko RE, Hossain M, Rai DK, Hayes M. Potential of a renin inhibitory peptide from the red seaweed Palmaria palmata as a functional food ingredient following confirmation and characterization of a hypotensive effect in spontaneously hypertensive rats. J Agric Food Chem. 2014;62(33):8352-8356.
16. Fitzgerald C, Mora-Soler L, Gallagher E, O’Connor P, Prieto J, Soler-Vila A, et al. Isolation and characterization of bioactive propeptides with in vitro renin inhibitory activities from the macroalga Palmaria palmata. J Agric Food Chem. 2012;60(30):7421-7427.
17. Sun S, Xu X, Sun X, Zhang X, Chen X, Xu N. Preparation and identification of ACE inhibitory peptides from the marine macroalga Ulva intestinalis. Mar Drugs. 2019;17(3),179: 1-17.
18. Suetsuna K, Chen JR. Identification of antihypertensive peptides from peptic digest of two microalgae, Chlorella vulgaris and Spirulina platensis. Mar Biotechnol. 2001;3(4):305-309.
19. Chen MF, Zhang YY, Di He M, Li CY, Zhou CX, Hong PZ, et al. Antioxidant Peptide Purified from Enzymatic Hydrolysates of Isochrysis Zhanjiangensis and Its Protective Effect against Ethanol Induced Oxidative Stress of HepG2Cells. Biotechnol Bioprocess Eng. 2019;24(2):308-317.
20. Kumar A, Krishnamoorthy E, Devi HM, Uchoi D, Tejpal CS, Ninan G, et al. Influence of sea grapes (Caulerpa racemosa) supplementation on physical, functional, and anti-oxidant properties of semi-sweet biscuits. J Appl Phycol. 2018;30(2):1393-1403.
21. Lorenzo JM, Sineiro J, Amado IR, Franco D. Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties. Meat Sci. 2014;96(1):526-534.
22. Arufe S, Della VG, Chiron H, Chenlo F, Sineiro J, Moreira R. Effect of brown seaweed powder on physical and textural properties of wheat bread. Eur Food Res Technol. 2018;244(1):1-10.
23. Fan X, Bai L, Mao X, Zhang X. Novel peptides with anti-proliferation activity from the Porphyra haitanesis hydrolysate. Process Biochem. 2017;60:98-107.
24. Sheih IC, Fang TJ, Wu TK, Lin PH. Anticancer and antioxidant activities of the peptide fraction from algae protein waste. J Agric Food Chem. 2010;58(2):1202-1207.
25. McLaughlin CM, Harnedy-Rothwell PA, Lafferty RA, Sharkey S, Parthsarathy V, Allsopp PJ, et al. Macroalgal protein hydrolysates from Palmaria palmata influence the ‘incretin effect’ in vitro via DPP-4 inhibition and upregulation of insulin, GLP-1 and GIP secretion. Eur J Nutr. 2021;60(8):4439-4452.
26. Hu S, Fan X, Qi P, Zhang X. Identification of anti-diabetes peptides from Spirulina platensis. J Funct Foods. 2019;56:333-341.
27. Li Y, Lammi C, Boschin G, Arnoldi A, Aiello G. Recent Advances in Microalgae Peptides: Cardiovascular Health Benefits and Analysis. J Agric Food Chem. 2019;67:11825–11838.
28. Li Y, Aiello G, Bollati C, Bartolomei M, Arnoldi A, Lammi C. Phycobiliproteins from Arthrospira platensis (spirulina): A new source of peptides with dipeptidyl peptidase-IV inhibitory activity. Nutrients. 2020;12(3),794:1-11.
29. Morris HJ, Carrillo O, Almarales A, Bermúdez RC, Lebeque Y, Fontaine R, et al. Immunostimulant activity of an enzymatic protein hydrolysate from green microalga Chlorella vulgaris on undernourished mice. Enzyme Microb Technol. 2007;40(3):456-460.
30. Ahn G, Hwang I, Park E, Kim J, Jeon YJ, Lee J, et al. Immunomodulatory effects of an enzymatic extract from Ecklonia cava on murine splenocytes. Mar Biotechnol. 2008;10(3):278-289.
31. Cian RE, Martínez-Augustin O, Drago SR. Bioactive properties of peptides obtained by enzymatic | hydrolysis from protein byproducts of Porphyra columbina. Food Res Int. 2012;49(1):364-372.
32. Kang HK, Lee HH, Seo CH, Park Y. Antimicrobial and immunomodulatory properties and applications of marine-derived proteins and peptides. Mar Drugs. 2019;17(6),350:1-25.
33. Cian RE, López-Posadas R, Drago SR, Sánchez De-Medina F, Martínez-Augustin O. A Porphyra columbina hydrolysate upregulates IL-10production in rat macrophages and lymphocytes through an NF-κB, and p38and JNK dependent mechanism. Food Chem. 2012;134(4):1982-1990.
34. Cian RE, Hernández-Chirlaque C, Gámez-Belmonte R, Drago SR, Sánchez de Medina F, Martínez-Augustin O. Green alga Ulva spp. hydrolysates and their peptide fractions regulate cytokine production in splenic macrophages and lymphocytes involving the TLR4-NFκB/MAPK pathways. Mar Drugs. 2018;16(7),235:1-15.
35. Ai C, Jiang P, Liu Y, Duan M, Sun X, Luo T, et al. The specific use of alginate from: Laminaria japonica by Bacteroides species determined its modulation of the Bacteroides community. Food Funct. 2019;10(7):4304-4314.
36. Li M, Li G, Shang Q, Chen X, Liu W, Pi X, et al. In vitro fermentation of alginate and its derivatives by human gut microbiota. Anaerobe. 2016;39:19-25.
37. Terada A, Hara H, Mitsuoka T. Effect of dietary alginate on the faecal microbiota and faecal metabolic activity in humans. Microb Ecol Health Dis. 1995;8(6):259-266.
38. Gotteland M, Riveros K, Gasaly N, Carcamo C, Magne F, Liabeuf G, et al. The pros and cons of using algal polysaccharides as prebiotics. Front Nutr. 2020;22(7),163:1-15.
39. Liu J, Kandasamy S, Zhang J, Kirby CW, Karakach T, Hafting J, et al. Prebiotic effects of diet supplemented with the cultivated red seaweed Chondrus crispus or with fructo-oligo-saccharide on host immunity, colonic microbiota and gut microbial metabolites. BMC Complement Altern Med. 2015;15,279:1-12.
40. Shang Q, Shan X, Cai C, Hao J, Li G, Yu G. Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of: Lactobacillus and Ruminococcaceae. Food Funct. 2016;7(7):3224-3232
41. Leal BES, Prado MR, Grzybowski A, Tiboni M, Koop HS, Scremin LB, et al. Potential prebiotic oligosaccharides from aqueous thermopressurized phosphoric acid hydrolysates of microalgae used in treatment of gaseous steakhouse waste. Algal Res. 2017;24:138-147.
42. Pierre G, Delattre C, Laroche C, Michaud P. Galactans and Its Applications. In: Ramawat K., Mérillon JM. (eds) Polysaccharides. Springer, Berlin, Germany. 2015;1-37.
43. Cofrades S, Serdaroǧlu M, Jiménez-Colmenero F. Design of healthier foods and beverages containing whole algae. In: Functional Ingredients from Algae for Foods and Nutraceuticals. Woodhead Publishing Series in Food Science, Technology and Nutrition. United Kingdom. 2013;609-633.
44. Biris-Dorhoi ES, Michiu D, Pop CR, Rotar AM, Tofana M, Pop OL, et al. Macroalgae—A sustainable source of chemical compounds with biological activities. Nutrients. 2020;12(10),3085:1-23.
45. Thumvijit T, Thuschana W, Amornlerdpison D, Peerapornpisal Y, Wongpoomchai R. Evaluation of hepatic antioxidant capacities of Spirogyra neglecta (Hassall) Kützing in rats. Interdiscip Toxicol. 2013;6(3):152–156.
46. Huo S, Wang H, Chen J, Hu X, Zan X, Zhang C, et al. A preliminary study on polysaccharide extraction, purification, and antioxidant properties of sugar-rich filamentous microalgae Tribonema minus. 7th congress of the international society for applied phycology (ISAP 2020-2021). J Appl Phycol. 2022;1-13.
47. Mousavian Z, Safavi M, Azizmohseni F, Hadizadeh M, Mirdamadi S. Characterization, antioxidant and anticoagulant properties of exopolysaccharide from marine microalgae. AMB Express. 2022;12(1):1-16.
48. Makkar F, Chakraborty K. Antioxidative sulphated polygalactans from marine macroalgae as angiotensin-I converting enzyme inhibitors. Nat Prod Res. 2018;32(17):2100-2106.
49. Ben Gara A, Ben Abdallah Kolsi R, Jardak N, Chaaben R, El-Feki A, Fki L, et al. Inhibitory activities of Cystoseira crinita sulfated polysaccharide on key enzymes related to diabetes and hypertension: in vitro and animal study. Arch Physiol Biochem. 2017;123(1):31-42.
50. Li B, Lu F, Wei X, Zhao R. Fucoidan: Structure and bioactivity. Molecules. 2008;13(8):1671-95.
51. Makkar F, Chakraborty K. Antidiabetic and anti-inflammatory potential of sulphated polygalactans from red seaweeds Kappaphycus alvarezii and Gracilaria opuntia. Int J Food Prop. 2017;20(6):1326-1337.
52. Ben Abdallah Kolsi R, Bkhairia I, Gargouri L, ktari N, Chaaben R, El Feki A, et al. Protective effect of Sargussum vulgare sulfated polysaccharide against molecular, biochemical and histopathological damage caused by alloxan in experimental diabetic rats. Int J Biol Macromol. 2017;105:598-607.
53. Manlusoc JKT, Hsieh CL, Hsieh CY, Salac ESN, Lee YT, Tsai PW. Pharmacologic application potentials of sulfated polysaccharide from marine algae. Polymers. 2019;11(7):1-21.
54. Wang J, Jin W, Zhang W, Hou Y, Zhang H, Zhang Q. Hypoglycemic property of acidic polysaccharide extracted from Saccharina japonica and its potential mechanism. Carbohydr Polym. 2013;95(1):143-147.
55. Liu J, Zhu X, Sun L, Gao Y. Characterization and anti-diabetic evaluation of sulfated polysaccharide from Spirulina platensis. J Funct Foods [Internet]. 2022;95(March):105155. Available from: https://doi.org/10.1016/j.jff.2022.105155
56. Umemura K, Yanase K, Suzuki M, Okutani K, Yamori T, Andoh T. Inhibition of DNA topoisomerases I and II, and growth inhibition of human cancer cell lines by a marine microalgal polysaccharide. Biochem Pharmacol. 2003;66(3):481-487.
57. He D, Yan L, Ma X, Cheng Y, Wu S, Zuo J, et al. Gamma-irradiation degraded sulfated polysaccharide from a new red algal strain Pyropia yezoensis sookwawon 104 with in vitro antiproliferative activity. Oncol Lett. 2020;20(4):1-8.
58. Kim EJ, Park SY, Lee JY, Park JHY. Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC Gastroenterol. 2010;10:1-11.
59. Athukorala Y, Ahn GN, Jee YH, Kim GY, Kim SH, Ha JH, et al. Antiproliferative activity of sulfated polysaccharide isolated from an enzymatic digest of Ecklonia cava on the U-937 cell line. J Appl Phycol. 2009;21(3):307–314.
60. Assef ANB, da Costa BB, Moreira TA, do Carmo LD, de Souza T de FG, Alencar NMN, et al. Antitumor and immunostimulating sulfated polysaccharides from brown algae Dictyota caribaea. Carbohydr Polym Technol Appl. 2021;2,100142: 1-7.
61. Jiao L, Jiang P, Zhang L, Wu M. Antitumor and immunomodulating activity of polysaccharides from Enteromorpha intestinalis. Biotechnol Bioprocess Eng. 2010;15(3):421-428.
62. Liu B, Liu QM, Li GL, Sun LC, Gao YY, Zhang YF, et al. The anti-diarrhea activity of red algae-originated sulphated polysaccharides on ETEC-K88 infected mice. RSC Adv. 2019;9(5):2360-2370.