Preliminary study on protein hydrolysates from Spirulina using enzymatic hydrolysis

Main Article Content

Supannee Bachaku
Wanida Pan-utai

Abstract

Spirulina is classified as microalgae and is composed of high quality protein. It contains trace amounts of essential amino acids and bioactive peptides, including important biological active substances such as phenolic compounds. Therefore, it helps to promote the consumer’s health. Protein hydrolysates are a source of a variety of bioactive peptides. Protein hydrolysates were obtained from Spirulina biomass using various conditions of enzymatic hydrolysis. The results found that the concentration of protein hydrolyses with alkaline protease was 6.33 mg/ml. However, hydrolysis with alcalase enzyme (Alcalase®) resulted in the highest protein concentration of 0.58 mg/ml. Total phenolic contents obtained from alcalase hydrolysis were greater than that of alkaline protease enzyme. Although different types of enzymes showed an effect on hydrolysis yield, protein yields were similar when the enzyme concentration and the hydrolysis time were varied.



Downloads

Download data is not yet available.

Article Details

Section
บทความวิจัย (Research Articles)

References

Bortolini DG, Maciel GM, Fernandes IdAA, Pedro AC, Rubio FTV, Branco IG, et al. Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chem: Mol Sci. 2022;5:100134.

Gur J, Mawuntu M, Martirosyan D. FFC’s advancement of functional food definition. Funct Foods Health Dis. 2018;8(7):385-97.

Akbarbaglu Z, Ayaseh A, Ghanbarzadeh B, Sarabandi K. Techno-functional, biological and structural properties of Spirulina platensis peptides from different proteases. Algal Res. 2022;66:102755.

Jie Y, Yuanliang H, Mingxiong X, Yaohao D, Shenao L, Nan P, et al. Purification and identification of antioxidant peptides from enzymatic hydrolysate of Spirulina platensis. J Microbiol Biotechn. 2016;26(7):1216-23.

Akbarbaglu Z, Ayaseh A, Ghanbarzadeh B, Sarabandi K. Biological stabilization of Arthrospira bioactive-peptides within biopolymers: Functional food formulation; bitterness-masking and nutritional aspects. LWT. 2024;191:115653.

Vo T-S, Ngo D-H, Kim S-K. Chapter 19 - Nutritional and pharmaceutical properties of microalgal Spirulina. In: Kim S-K, editor. Handbook of Marine Microalgae. Boston: Academic Press; 2015. p. 299-308.

Zhang N, Li F, Zhang T, Li C-Y, Zhu L, Yan S. Isolation, identification, and molecular docking analysis of novel ACE inhibitory peptides from Spirulina platensis. Eur Food Res Technol. 2022;248(4):1107-15.

Moghadamzadegan S, Emtyazjoo M, Sadeghi M, Rabbani M. Evaluation of Anti-inflammatory Effects of bioactive peptides of Spirulina platensis extracted by animal cysteine protease enzyme in Mice Balb/C. J Anim Biol. 2021;13(4):119-32.

Wang Z, Zhang X. Inhibitory effects of small molecular peptides from Spirulina (Arthrospira) platensis on cancer cell growth. Food Funct. 2016;7(2):781-8.

Sun Y, Chang R, Li Q, Li B. Isolation and characterization of an antibacterial peptide from protein hydrolysates of Spirulina platensis. Eur Food Res Technol. 2016;242(5):685-92.

Bingli Z, Cui Y, Xiaodan F, Qi P, Liu C, Zhou X, et al. Anti-obesity effects of Spirulina platensis protein hydrolysate by modulating brain-liver axis in high-fat diet fed mice. PLOS ONE. 2019;14:e0218543.

Lee C-W, Chang YB, Park CW, Han SH, Suh HJ, Ahn Y. Protein hydrolysate from Spirulina platensis prevents dexamethasone-induced muscle atrophy via Akt/Foxo3 signaling in C2C12 myotubes. Marine Drugs [Internet]. 2022; 20(6).

Akbarian M, Khani A, Eghbalpour S, Uversky VN. Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. Int J Mol Sci. 2022;23(3).

Nasri M. Chapter Four - Protein hydrolysates and biopeptides: production, biological activities, and applications in foods and health benefits. a review. In: Toldrá F, editor. Advances in Food and Nutrition Research. 81: Academic Press; 2017. p. 109-59.

Noreen S, Siddiqa A, Fatima R, Anwar F, Adnan M, Raza D-A. Protease production and purification from agro industrial waste by utilizing Penicillium digitatum. Int J Appl Biol Forensic. 2017;1(4):119-29.

Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev. 1998;62(3):597-635.

Pan-utai W, Iamtham S, Boonbumrung S, Mookdasanit J. Improvement in the sequential extraction of phycobiliproteins from Arthrospira platensis using green technologies. Life [Internet]. 2022; 12(11).

Pan-utai W, Pantoa T, Roytrakul S, Praiboon J, Kosawatpat P, Tamtin M, et al. Ultrasonic-assisted extraction and antioxidant potential of valuable protein from Ulva rigida macroalgae. Life. 2023; 13(1).

Forutan M, Hasani M, Hasani S, Salehi N. Antioxidative activity and functional properties of enzymatic protein hydrolysate of Spirulina platensis. J Food Biosci Technol. 2023;13(1):75-89.

Sharma M, Gat Y, Arya S, Kumar V, Panghal A, Kumar A. A review on microbial slkaline protease: an essential tool for various industrial approaches. Ind Biotechnol. 2019;15:69-78.

Niknam H, Fathi F, Mahboubi A, Tabarzad M. Antioxidant activity of peptides derived from enzymatic digestion of Spirulina platensis protein extract by different proteases : antioxidant activity of protein digests of S. platensis. Trends Pept Protein Sci. 2022;7:1-7 (e6).

Shishavan MM, Mirdamadi S, Ofoghi H. Antioxidant activity of alcalase hydrolysates of Spirulina proteins. Microbiol Metab Biotechnol. 2019;2(2):109-18.

Fan X, Cui Y, Zhang R, Zhang X. Purification and identification of anti-obesity peptides derived from Spirulina platensis. J Funct Foods. 2018;47:350-60.

Ouyang K, Chen Q, Xie H, Zhang Q, Tao L, Xiong H, et al. Arthrospira cell residue valorization: a study on protein hydrolysate production by limited enzymatic hydrolysis. Food Biosci. 2023;56:103264.

Verni M, Dingeo C, Rizzello CG, Pontonio E. Lactic acid bacteria fermentation and endopeptidase treatment improve the functional and nutritional features of Arthrospira platensis. Front Microbiol. 2021;12.

Verdasco-Martín CM, Echevarrieta L, Otero C. Advantageous preparation of digested proteic extracts from Spirulina platensis biomass. Catalysts. 2019; 9(2).

Silva PCd, Toledo T, Brião V, Bertolin TE, Costa JAV. Development of extruded snacks enriched by bioactive peptides from microalga Spirulina sp. LEB 18. Food Biosci. 2021;42:101031.

Maag P, Dirr S, Özmutlu Karslioglu Ö. Investigation of bioavailability and food-processing properties of Arthrospira platensis by enzymatic treatment and micro-encapsulation by spray drying. Foods. 2022; 11(13).

Forutan M, Hasani M, Hasani S, Salehi N, Sabbagh F. Liposome system for encapsulation of Spirulina platensis protein hydrolysates: controlled-release in simulated gastrointestinal conditions, structural and functional properties. Materials. 2022; 15(23).

Yücetepe A, Kasapoğlu K, Ozcelik B. Angiotensis-I-converting enzyme inhibitory and antioxidant activity of tryptic Spirulina platensis protein hydrolysates: effect of hydrolysis and in vitro gastrointestinal digestion. Ecol Life Sci (NWSAELS). 2018;13(3):151-62.

Guldas M, Ziyanok S, Sahan Y, Yıldız E, Gurbuz O. Antioxidant and anti-diabetic properties of Spirulina platensis produced in Turkey. Ciência e Tecnologia de Alimentos. 2021;41:615-25.